Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34423
標題: 海堤設施對風速影響之研究
Study on the Effect of Wind Reduction by Different Seawall
作者: 林信佑
Lin, Hsing-Yu
關鍵字: simulation
數值模擬
wind tunnel
seawall
風洞實驗
海堤設施
出版社: 水土保持學系所
引用: 1.王玉懷、莊文斯(1995)台灣附近海域風場之觀測及探討。氣象學報,41(2)pp.81~90。 2.水利統計簡訊(2005)。經濟部水利署。 3.江永哲、游繁結、蕭飛賓、方富民、黃隆明(1992)彰化濱海工業區防風設施之風洞測試研究報告。國立中興大學水土保持學系。 4.汪群從、黃榮鑑(1983)大氣邊界層風洞之規劃與設計研。行政院國家科學委員會研究計劃研究報告。NSC-72-0414-P-001-01。AEWT001。 5.周恆(1978)防風定砂。 6.胡敏元(1994)防風堤防風效應之探討。國立中興大學土工程研究所碩士論文。 7.張能復(1988)台中火力發電廠燃煤儲運場防風堤功能實驗研究。國立台灣大學環境工程研究所。 8.許時雄(1989)海岸防護基本觀念。海堤規劃設計手冊。 9.許時雄、謝勝彥、蕭茂鎮(1989)海堤規劃。海堤規劃設計手冊。 10.許時雄(2001)河川防洪與海岸防護。 11.許皓昌(1999)透風式防風牆風場特性之實驗研究。國立中央大學土木工程學系碩士論文。 12.郭一羽(2001)海岸工程學。 13.郭金棟(2004)海岸保護。 14.郭金棟、林信輝、陳文俊(2004)海岸工法之新技術研發(4/4)。 15.游繁結、黃隆明(1992)不同防風構造物抵抗係數之探討。水土保持學報 24(2):57-69。 16.黃隆明、江永哲(1989)澎湖海岸防風構造物之探討(Ⅲ) 17.黃隆明(1997)不透風式構造物之防風功效研究。國立中興大學水土保持學系博士論文。 18.黃美琪(2000)親水性堤岸設計原則之建立。國立交通大學土木工程學系碩士論文。 19.曾子祥(1999)親水性緩坡海堤最佳面坡及休憩功能之研究。國立交通大學土木工程學系碩士論文。 20.蔡立宏、何良勝、陳明宗(2004)海岸保護及親水性結構物最適化配置研究(4/4)。 21.蔡立宏、何良勝、陳明宗(2005)海岸保護及親水性結構物最適化配置研究(3/4)。 22.澎湖縣山水、時裡海岸調查及防護工法初步設計(第二階段)(期初報告)(2005)。台灣漁業及海洋技術顧問社。 23.盧保吉(1998)地面上鄰近矩柱之流場模擬。國立中興大學土木工程研究所碩士論文。 24.簡俊彥、蔡茂明(1989)台灣海岸地區氣象概況。海堤規劃設計手冊。 25.蕭茂勝(1989)海堤設計概論。海堤規劃設計手冊。 26.Arie, Mikio and Rouse, Hunter (1965) “Experiments on Two Dimensional Flow Over a Normal Wall, “Journal of Fluid Mechanics,Vol. 2, pp. 49~71. 27.Armitt, J. and Counihan, J. (1968) “The simulation of the Atmospheric Environment,” Atmospheric Environment, Vol. 2,pp.47-71. 28.Biggs, J. M. (1954) “Wind Load on Truss Bridges,”ASCE, Vol. 119, pp.49-71. 29.Cermak, J. E. and Peterka, J. A. (1974) “Simulation of Atmospheric Flows in Short Wind Tunnel Test Sections,” Center for Building Technology, IAT, National Bureau of Standard Was Hington, D. C.,June. 30.Counihan, J. (1970) “Atmospheric Environment,” Atmospheric Environment, Vol. 4, pp.159~275. 31.Counihan, J. (1973) “Simulation of an Adiabatic Urban Boundary Layer in a Wind Tunnel,” Atmospheric Environment, Vol. 7, pp.673~689. 32.Counihan, J. (1975) “Adiabatic Atmospheric Boundary Layers: A Review and Analysis of Data from the Period 1880-1972,” Atmospheric Environment, Vol. 9, pp.871~905. 33.Fang, Fuh-Min (1997) “ On the Flow Around a Vertical Porous Fence, ” J. Wind Engg. And Ind.Aerod.,Vol.67and 68, pp.415-424. 34.Fang, Fuh-Min , Jong,W.D. J.J. (1997) ” Unsteady Turbulent Flow Past Solid Fence, “ J.Hydraulic Engg. , ASCE,,Vol.123, pp.560-565. 35.Good, M.C.and Joubert, P.N. (1968) ” The Form of Two-Dimensional Bluff-Plates Immersed in Turbulent Boundary Layers, “ J. Fluid Mech. ,Vol.31,Part 3 , pp.547-582. 36.Hunt, A. (1982) “Wind Tunnel Measurement of Surface Pressure on Cubic Building Models at Several Scales,” J. Wind Engg. And Ind.Aerod., Vol. 10,pp.137-163. 37.Gupta,V.P. and Raju G. R. (1986) “ Separated Flow in Lee of Solid and Porous Fences , “ J. Hydraulic Engg., ASCE, Vol.113,No.10. 38.Kolmogorov, A.N. (1941) “The Local Structure of Turbulence in Incompressible Viscous Fluid for Very Large Reynolds Number,” Doklady An. SSSR, Vol. 30, No. 4, pp.299~303. 39.MacCormak, R.W. (1969) ” The Effect of Viscosity in Hyper-Velocity Impact Cratering ,” AIAA PAPER, NO.69-354. 40.Nakamura Y. and Ozono , S . (1987) “ The effect of turbulence on a separated and reattaching flow. “J. Fluid Mech.178,477-490. 41.Prandl, L. (1925) “Uber die Ausgebildete Turbulenz,” ZAMM 5,pp.136-139. 42.Pearse, JR. (1982) “Wind Flow Over Conical Hills in a Simulated Atmosphere Boundary Layer,”Journal of Wind Engineering and Industrial Aerodynamics, Vol. 10, pp.303~313. 43.R.G. Dean and R.A. Dalrymple (2001) “Coastal Processes with Engineering Application.” Cambridge University Press. 44.Smagorinsky, J. (1963) “ General Circulation Experiments with the Primitive Equations ,” Month Weather Review , Vol.93, No.99, pp.99-164. 45.Simiu, E. and R.H. Scanlan (1986) “Wind Effects on Structure,” John Wiley & Sons, Inc. New York, pp. 39~52. 46.Song C.C.S. and M. Yuan (1987) “A Weakly-Compressible-Flow Model and Rapid Convergence Methods, “Journal of Fluids Engineering, ASME Trans., pp.441~445. 47.Standen, N. M. (1972) “A Apire Array for Generating Thick Turbulent Shear Layers for Nature Wind Simulation in Wind Tunnels,” Rep. LTRLA-94, National Aeronautical Esblisment, Ottawa, Canada. 48.Townsend, A. (1956) “The Structure of Turbulent Shear Flow,” Cambridge University Press, pp.1~315. 49. Van, E. J. Karschon, R. Razumova, L. A. and Roberts, G. W., 1964, “Windbreaks and Shelterbelts,” W. M. O. Technical note 59, pp.5-21. 50.谷 信輝(1952)防風牆機能關研究。模型防風牆風洞實驗( 2)。日本農業氣象,7(3)(4):56~58。 51.谷 信輝(1958)模型防風垣風洞實驗。農技研報告。A-6。1~80。
摘要: The purpose of this study is to simulation flow field of different seawall with numerical method. And we got better effect of wind reduction by improving the shape of stepped seawall. To ensure the accuracy of the numerical simulation in this study, the wind tunnel experiment is used as a method of testing and verifying the differences in numerical simulation. In each case, the width of the top seawall and the height of seawall and the slope of back seawall is fixed to 3.0m、6.0m and 1:1. We have simulated the different cases with the Reynolds number (4.7×104), the ratio of the boundary layer(8.33H) and the n of the Power Law (0.107). After handling and analyzing the data of the test with the software Tecplot, Autocad and Grapher, we then prove the mode is useable by confirming and verifying the results. The conclusions drawn are as follows: 1.In this study, the slope of the multi-seawalls is to mild too have the worst distance of protection and protection index. 2.The ameliorate seawall has the best distance of protection(12.3H). The second is stepped seawall (11.5H). The third is retaining seawall (10.8H). 3.The retaining seawall has best P.I. (67.10H2). The second is stepped seawall (58.89H2). And the third is ameliorate (57.83H2). 4.The size of reverse of flow is affected by the drag coefficient. A greater drag coefficient lead to thin and long reverse of flow;otherwise, the reverse of flow is thickness and short.
本研究的目的在於以數值方法模擬不同海堤設施之流場,並對階梯狀海堤設施形狀加以改良,來達到較佳的防風效果。研究中先以兩組現有海堤進行風洞實驗與數值模擬進行比較與驗證,以確定數值模擬的可行性。不同海堤設施間的堤頂寬、堤高及內坡,分別固定為3.0m、6.0m及1:1,並在雷諾數4.7×104,邊界層厚度為8.33H,指數率為0.157之狀況下,對不同的外及形狀進行數值模擬,同時配合Tecplot、Autocad及Grapher等軟體進行資料整理與分析,經由比對與驗證之後,證實數值模式之可行性。茲將所得結果整理如下: 1. 在本研究中,複合式海堤由於外坡坡度較緩,所以其保護距離與保護指離效果皆不理想。 2. 改良式海堤設施有最佳保護距離為12.3H,階梯狀海堤設施次之為11.5H,而壅壁狀效果較差僅10.8H。 3. 保護指數以壅壁狀最佳達67.10H2,階梯狀海堤施次之為58.89H2,而改良式海堤設施較差為57.83H2。 4. 迴流區的大小受外坡的阻力係數影響。阻力係數愈大,下游面的迴流區則較為細長;反之,則較為高大。
URI: http://hdl.handle.net/11455/34423
其他識別: U0005-2308200613423500
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.