Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34497
標題: A Study of Evaluation Model on Slope Failure Potential With Fuzzy Theory-The Slope-Land Area in Taipei City as an Example
應用模糊理論建立邊坡崩塌潛勢評估模式之研究—以台北市山坡地區為例
作者: Chen, Chung-Hao
陳中豪
關鍵字: Slope-land
邊坡崩塌
Slope Failure
Fuzzy Theory
Critical rainfall line
模糊理論臨界降雨線
出版社: 水土保持學系所
引用: 1. 中華水土保持學會(2005),「水土保持手冊」。 2. 中華民國大地工程學會(2006),「台北市雨量監測資料與邊坡崩塌預警基準操作訂定(第2期)成果報告書」,台北市政府建設局。 3. 王文俊(2005),「認識Fuzzy」,全華科技圖書股份有限公司。 4. 王鑫(1988),「地形學」,聯經出版事業公司。 5. 江英政(1998),「土石流危險溪流判定之研究」,國立台灣大學土木工程研究所,碩士論文。 6. 行政院農業委員會(2003),「水土保持技術規範」。 7. 李三畏(1984),「台灣崩塌問題探討」,地工技術,7:43~49。 8. 李心平、張斐章(1995),「模糊控制理論應用於土石流預警系統之研究」,中華水土保持學報,26(2):145~154。 9. 李錦育(1996),「集水區經營」,睿煜出版社。 10. 林正道(2003),「土石流危險度之模糊回歸分析和綜合評判」,中原大學土木工程學系,碩士論文。 11. 林孟龍(1999),「颱風對於蘭陽溪上游集水區懸移質生產特性的影響」,國立臺灣大學地理學研究所,碩士論文。 12. 林美聆、陳天健、林鴻州、游文輝(2003),「台北市崩塌警戒模式訂定方法之研究」,中華水土保持學報,34(4):389~399。 13. 林保宏、陳昆揮、盧炳志、林國峰(2006),「模糊推論系統於花蓮地區土石流危險評估之探討」,中華水土保持學報,37(1):23~32。 14. 林郁欽(2000),「坡地崩塌機率鑑別函數之建立與應用評估」, 國立台灣科技大學營建工程所,碩士論文。 15. 林建宏(2001),「山坡地住宅區防災區風險管理機制建立之研究」,國立台北科技大學土木與防災研究所,碩士論文。 16. 林書毅(1999),「區域性山坡穩定評估方法探討-以林口台地為例」,國立中央大學應用地質研究所,碩士論文。 17. 洪如江(1996),「賀伯颱風、新中橫公路與坍方及土石流災害」,地工技術,57 : 25~30。 18. 洪如江、林美聆、陳天健、王國隆(2000),「921 集集大地震相關的坡地災害、坡地破壞特性與案例分析」,地工技術,81:17~32。 19. 范正成、吳明豐、彭光宗(1999),「豐丘土石流發生區臨界降雨線之研究」,地工技術,74 : 39~46。 20. 胡蘇澄、李麗玲(1997),「台灣中部七家灣溪集水區潛在崩塌危險地之評定」,台灣林業科學,13(4):271 21. 許琦(1989),「模糊集理論在山崩潛感性分析之應用」,國立成功大學土木工程系,第三屆大地工程學術研究討論會,第23~33 頁22. 張石角(1987),「山坡地潛在危險之預測及其在環境影響評估之應用」,中華水土保持學報,18(2):41~48。 23. 張石角(1988),「台灣工程地質分區及其崩山類型之關係」,第五屆國際崩山研討會,瑞士。 24. 張石角(1995),「台灣東部之環境地質分區與崩塌類型」,工程環境會刊,14:59~85。 25. 陳紫娥(2000),「花蓮溪河谷沖積扇之自然環境、土地利用及其土石災害之研究」,國家科學委員會1999 年度專題研究計畫。 26. 陳信雄(1995),「崩塌地調查與分析」,渤海堂出版社。 27. 陳樹群、吳俊鋐(2004),「集集地震引發九九峰地區之崩塌型態探討」,中華水土保持學報,36(1):101~112。 28. 曹鎮、陳文福、徐義人(2006),「應用模糊理論於颱風降雨量之推估」,水土保持學報,38(1):21~29。 29. 傅裕盛(2004),「模糊理論應用於土石流危險度分析之研究」,國立成功大學水利及海洋工程研究所,碩士論文。 30. 劉政良(2000),「土石流危險度之模糊綜合評判」,中原大學土木工程學系,碩士論文。 31. 黃俊耀(2000),「台灣地區土石流發生臨界降雨特性之研究—以花蓮、台東及南投縣為例」,成功大學水利及海洋工程研究所,碩士論文。 32. 黃臺豐(1999),「瑞里地震誘發之山崩」,國立中央大學應用地質研究所,碩士論文。 33. 游中榮(1996),「應用地理資訊系統於北橫地區山崩潛感之研究」,國立中央大學應用地質研究所,碩士論文。 34. 廖軒吾(2000),「集集地震誘發之山崩」,國立中央大學地球物理研究所,碩士論文。 35. 廖洪鈞、林郁欽、溫琇玲(2001),「鑑別分析法於邊坡安全評估之應用」,中國土木水利工程學會,中國土木水利工程學會會刊,82(2):49~63。 36. 謝正倫(1991),「土石流預警系統之研究」,國立成功大學台南水工試驗所研究報告。 37. 謝正倫(1997),「土石流預警之研究」,現代營建,210:9~17 38. 簡李濱(1992),「應用地裡資訊系統建立坡地安定評估之計量方法」,國立中興大學土木工程學系,碩士論文。 39. 蘇苗彬、蔡顯修、簡李濱(1998),「集水區坡地安定評估之計量分析方法」,中華水土保持學報,29(2):105~114。 40. 池古浩(1980),「土石流災害調查法」,山海堂出版社。 41. Abe, K., and M. Iwamoto, 1987, “Soil mechanical role of tree roots in preventing landslides”, 5th International Conference and Field Workshop on Landslides, Christchurch, New Zealand. 42. Bell, F. G., and P. R., Maud, 2000, “Landslides associated with the colluvial soils overlying the Natal Group in the greater Durban region of Natal,” South Africa. Environmental Geology, 39(9):1029~1038. 43. Bishop, A. W., 1955, “The Use of The Slip Circle in the Stability Analysis of Slopes,” Geotechnique, 1(1):7~17. 44. Campbell, R. H., 1975, “Debris flow originating from soil slip during rainstormin southern California”, Enginerring Geology,7:339~349. 45. Celmins, A., 1987, “Least Square Model fitting to fuzzy vectoe data”, Fuzzy Sets and Systems, 22:669~690. 46. Crosta, G., 1998, “Regionalization of rainfall thresholds:an aid to landslide hazard evaluation”, Environmental Geology ,35(2):131~145. 47. Dai, F. C. and C. F. Lee, 2001, “Frequency-volume relation and prediction of rainfall- induced landslides”, Engineering Geology, 59:253~266. 48. Diamond, P., 1988, “Fuzzy least square”, Information Sciences, 46:141~157. 49. Endo, T., and T., Tsirita, 1969, “ The effect of the tree’s roots on the strength of soil,” Hokkaio Branch For Exp. Stn., Ann. Rep.,167~182. 50. Fookes, P. G., M. Sweeney, C. N. D. Manby, and R. P. Martin, 1985,“Geological and geotechnical engineering aspects of low-cost roads in mountainous terrain”, Engineering Geology, 21:1~152. 51. Gao, J., and C.P. Lo, 1991, “GIS modeling of influence of topography and morphology on landslide occurrence on Nelson County”, Virginia,U.S.A., Earth Surface Process and Landforms, 18:579~591. 52. Glade, T., 2000, “Modelling landslide triggering rainfall thresholds at a range of complexities” , Proc of the VIII International Symposium on Landslides, Cardiff, Telford, London, 2:633~640. 53. Hearn, G. J., 1995, “Landslide and erosion hazard mapping at Ok Tedi Cooper Mine, Papua New Guinea”, Quarterly Journal of Engineering Geology, 28:47~60. 54. Keefer, D. K., 1984, “Landslides caused by earthquakes”, Geol. Soc. Am. Bull., 95:406~421. 55. Keefer, D.K., 2000, “Statistical Analysis of an Earthquake-Induced Landslide Distribution – the 1989 Loma Prieta, California Event”, Engineering Geology, 58:231~249. 56. Kienholz, H., 1977, “Kombinierte Geomorphologische Gefahrenkarte 1:10000 von Grindelwald ” , Catena, 3:265~294. 57. Koukis, G. and C. Ziourkas, 1991, “Slope Instability Phenomena in Greece: A Statistical Analysis”, Bulletin of the International Association of Engineering Geology, 43:47~60. 58. Lump, P., 1975, “Slope failures in Hong Kong”, Quarterly Journal of Engineering Geology, 8:31~65. 59. O’Loughlin, C. L., 1974, “A study of tree root strength deterioration following clearfelling ” , Can. J. For. Res., 4(1):107~113. 60. Polemio, M. and F., Sdao, 1999, “The role of rainfall in the landslide hazard:the case of the Avigliano urban area (Southern Apennines, Italy)” , Engineering Geology, 53:297~309. 61. Sidle, R. C., 1992, “A theoretical model of the effects of timber harvesting on slope stability,” Water Resource Research, 28(7):1897~1910. 62. Sharpe, C. F. S., 1938, “Landslide and Related Phenomena”, Cloumbia University Press, New York. 63. Skempton, A. W., 1970, “First-time slide in over-conaolidated clays,”Geotechnique, 20:320~324. 64. Tanaka, H., and S. Uejima and K. Asai, 1982, “Fuzzy linear regression model”, IEEE Trans. System, Man and Cybernet, 12:903~907. 65. Varnes, D. J., 1978, “Landslides analysis and contral, transportation,”Res. Board Nat. Ac. Sci., Washington Spee. Rep., 176. 66. Zadeh, L. A., 1965 , “Fuzzy sets”, Information and Control, 8:338~353.
摘要: Owing to the dense population and dense slope-land development of Taipei city, the torrential rain is extremely easy to have slope failure especially after the violent earthquake-921 occurred in 1999. In order to undersatad the failure potential, it is will be better to erect an evaluation model on slope failure potential as a reference when prevent and rescue the disaster and evacuation. The main purposes of this study is firstly to apply the fuzzy theory to divides the slope failure factors into the latent factors (slope steepness, geologic sort, rock stratum attitude) and stimulated factors (effective accumulated rainfall, hourly rainfall). Secondly, I ltized the historical calamity material to set up the relativity and the risk between factors and the slope failure, the relation between the line in fuzzy regression of critical rainfall line and its membership when slope failure occurs. Finally, decide the slope failure potential by the relation between evaluation result and the earthquake weighting. The four majior points I got are: (1) Fuzzy evaluation model erected by this study is in the line with the real condition after verifying practically. (2) When the relativity of hourly rainfall and the effective accumulated rainfall is above the critical rainfall line of y1=-0.115x+39, the essential prevention and refuge of disaster should be taken into action, in case the slope failure causes the damage. (3) After quantifying and analyzing of fuzzy theory, the risk degree of the slope geologic sorts of Taipei city in the decreasing order is the Mushan formation, the Shihti formation, the Taliao formation, the tuff breccia, the Nankang formation, the Wuchihshan formation, the alluvium, the volcanic rock, the Kueichuling formation, the Nanzhuang formation. (4) The relativity of slope failure latency factor and potential evaluation in the decreasing order is geologic sort (0.383)> slope steepness (0.363)> rock stratum attitude> (0.254).
台北市由於人口稠密,且山坡地開發利用之密度甚高,尤其自1999年台灣發生百年頻率之921大地震後,每遇豪雨輒生邊坡崩塌甚或造成災害。為期有效減免災害之發生,宜進一步瞭解其崩塌之潛勢,並建立邊坡崩塌潛勢評估分析之模式,以作為災害防救與疏散避難決策之參考。 本研究旨在應用模糊理論,將邊坡崩塌之因子分為潛在因子(邊坡坡度、地質種類、岩層位態)與誘發因子(有效累積雨量與時雨量)兩項,並利用歷史災害資料以建立各因子與邊坡崩塌發生的相關程度及危險度、邊坡崩塌發生臨界降雨線之模糊迴歸線及模糊隸屬之關係,最後藉由綜合評估之結果與地震加權之考量,可決定邊坡崩塌之潛勢。 本研究經過分析討論獲得的重點有四:(1)由本研究所建立的模糊評估模式,經實例驗證與實際狀況考量尚能符合。(2)當時雨量與有效累積雨量之相對關係位於臨界降雨線y1=-0.115x+39之上時,應採取必要之防災避難措施,以免因邊坡發生崩塌而造成災害。(3)台北市邊坡地質之種類經量化後,並以模糊理論分析之結果,其危險程度由大而小依序為:木山層、石底層、大寮層、凝灰角礫岩、南港層、五指山層、沖積層、火山岩流、桂竹林層、南莊層。(4)邊坡崩塌潛在因子對崩塌潛勢評估之權重值由大而小依序為:地質種類(0.383)>邊坡坡度(0.363)>岩層位態(0.254)。
URI: http://hdl.handle.net/11455/34497
其他識別: U0005-0608200712334200
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.