Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34501
標題: 桂竹根系拉拔試驗及其坡面之穩定性評估
The Pull-Out Test and Evaluation of Slope Stability with Soil/Root System of Makino''s Bamboo
作者: Lai, Chun-Fan
賴俊帆
關鍵字: 桂竹根系
Makino bamboo root system
根系~加勁材轉換模式
根系~加勁等值層
拉拔試驗
相對安全係數
root ~ reinforcement conversion model
root ~ reinforced equivalence layer conversion model
pull-out test
relative factor of safety
出版社: 水土保持學系所
引用: 1.王欣俞,(2006),「植生邊坡穩定性之量化評估」,國立中興大學水土保持學系碩士論文。 2.何昱昀,(2004),「根系對土壤加勁效果之數值模擬」,國立中興大學水土保持學系碩士論文。 3.呂錦明,(1996),「竹類地下莖型態分類之探討」,現代育林 12(1):73-90。 4.林維治,(1958),「台灣竹類生長之研究」,台灣省林業試驗所試驗報告第54號。 5.林維治,(1976),「台灣竹亞科植物之分類」,台灣省林業試驗所試驗報告第271號。 6.林信輝,(2001),「水土保持植生工程」,高立圖書公司 PP.90~93。 7.林信輝、陳意昌、張俊斌、孫明德,(2004),「美洲闊苞菊根株拉拔抗力推定模式之研究」,農林學報 53(4): 293-306。 8.林德貴、黃伯舜、林信輝,(2005),「植生工程根系力學-調查與試驗」,地工技術 104: 87-102。 9.林信輝、楊宏達、陳意昌,(2005),「九芎植生木樁之生長與根系力學之研究」,中華水土保持學報 36(2): 123-132。 10.高齊治,(1998),「西南部泥岩地區刺竹耐旱特性及其根力特性之研究」,國立中興大學水土保持學系碩士論文。 11.高毓斌,(1987),「桂竹之生長與培育」,現代育林 2(2):54-64。 12.陳燿榮,(2006),「桂竹林崩塌機制動態之調查研究」,國立中興大學水土保持學系碩士論文。 13.張俊斌,(1995),「中橫崩塌地優勢植物植生特性與其根力之研究」,國立中興大學水土保持學系碩士論文。 14.黃崑崗,(1975),「桂竹林作業法之研究」,林業試驗所試驗報告 260: 76。 15.戴廣耀、楊寶霖、沈榮江,(1973),「台灣竹林資源」,農復會、林務局、航測隊、屏東農專合作計畫 PP.82。 16.顏正平,(1973),「水土保持植物根系分佈基本型態調查」,中華水土保持學報 4(1):65-84。 17.顏正平,(1974),「水土保持木本植物根系分佈類型研究」。國立中興大學編印。 18.Cazzuffi,D. and E. Crippa, 2005, Shear Strength Behaviour of Cohesive Soils Reinforced with Vegetation. 16th International Conference on Soil Mechanics and Geotechnical Engineering, September 12~16, PP.2493~2498. 19.Gray, H.G. and Sotir, R.B., 1996, Biotechnical and soil bioengineering- Slope stabilization. John Wiley & Sons,Inc. 20.Greenway, D.R., 1987, Vegetation and Slope stability, in: Slope stability.Edited by M.G. Anderson and K.S. Richards, John Wiley & Sons Ltd. 21.Gray, D.H., 1970, Effect of forest clear-cutting on the stability of natural slopes. Bull.Assn.Engg.Geol. 7(1):PP.45-66. 22.Gray, D.H. and W.F. Megaham, 1981, Forest vegetation removal and slope stability in the Idaho batholith. Intermountain forest and range exprement station research paper int-271, Forest service U.S. 23.Khazai, B. and N. Siter, 2000, Assessment of Seismic Slope Stability Using GIS Modeling. Geographic Information Science. 6(2):PP.121-128. 24.Raymond H. Myers., 1986, Classical and Modern Regression with Applications. PWS and Kent Publishing Co. 25.Operstrin,V. and S. Frydman, 2000, The Influence of Vegetation on Soil Strength, Ground Improvement, 4: PP.181~91. 26.Operstrin,V. and S. Frydman, 2001, Numerical simulation of direct shear of root-reinforced soil. Ground Improvement 5, PP163-168. 27.Operstrin,V. and S. Frydman, 2002, The Stability of Soil Slopes Stabilised with Vegetation, Ground Improvement, 6: PP.163~168. 28.Tien H. Wu., 1976, Investigation of landslides on prince of wales island Alaska. Geotechnical engineering report No.5, Department cilivel engineering ohio stste university, Columbus. P.94. 29.Tien H. Wu. And William P. McKinnell III and Douglas N. Swanston, 1979, Strength of tree roots and landslides on Prince of Wales Island. Alaska. Can. Geotech.J. 16:PP.19-33. 30.Tien H. Wu and Chinchun Lan, 1988, In situ shear test of soil-root systems. Journal of Geotechnical Engineering. 114(12):PP.1351-1357. 31.Tien H. Wu William P. Mckinnell Ⅲ and Douglas N. Swanston, 1979, Strength of Tree Roots and Landslides on Prince of Wales Island, Alaska. Can. Geotech. J. 16: PP.19~33. 32.Tien H. Wu, 1994, Slope Stabilization Using Vegetation. Geotechnical Engineering Emerging Trends in Design and Practice. PP.377~402. 33.Tien H. Wu,Alex J. Watson and Mohamed A. El-Khouly, 2004, Soil-Root Interaction and Slope Stability, Ground and Water Bioengineering for Erosion Control and Slope Stabilization. PP.183~192. 34.Wilde, S.A., 1958, Forest Soils : Their protection and relation to silviculture. New York, Ronald Press. P.537. 35.Waldron, L. J., 1977, The Shear Resistance of Root-Permeated Homogeneous and Stratified Soil, Soil Science Society American J. 41: PP.843~849. 36.Waldron, L. J. and Suren Dakessian, 1981, Soil Reinforcement by Roots: Calculation of Increased Soil Shear Resistance from Root Properties. Soil Science 132(6): PP.427~435. 37.上田 弘一郎,(1963),「有用の竹と筍-栽培の新技術」,博友社,東京,PP.314. 38.上田 弘一郎,(1985),「竹のはなし」,PHP研究所.
摘要: 台灣由於瀕繁的天然災害與地質特性,使得坡地極易產生崩塌, 故崩塌地治理一直是政府及民眾所關切的議題。由於國內對於植物根 系型態與其根力對邊坡穩定性補強作用之研究甚少,因此本研究期望 藉由桂竹林根系之調查成果及力學試驗,並輔以數值分析方法來評估 桂竹根系對邊坡穩定性之加勁效果。 利用根系~加勁材(root ~ reinforcement)及根系~加勁等值層(root ~ reinforced equivalence layer )之轉換模式,可對邊坡穩定分析中之根 系強度性質進行模擬。另外,採用相對安全係數(Relative Factor of Safety, RFS=FSr/FSo)之觀念,可將桂竹根系邊坡相對於無根邊坡之穩 定性予以量化。在桂竹根系邊坡穩定性影響因子之參數研究方面,則 針對坡高、坡度、根系密度及坡面覆土厚度等因子進行敏感度分析。 在根系~加勁材轉換模式分析部分,可發現在各種坡度之桂竹林 邊坡上,RFS 值會隨覆土層厚度ds 之增加(ds=1 m → 1.5 m → 2 m)而 逐漸降低,最後並趨近於1。此暗示在覆土較厚之情況,根系對坡面 之加勁效果將受到較大量下滑土體之影響而變得不顯著。在根系生長 密度(根系間距)與根面積比(根徑)對桂竹林邊坡穩定性之影響方面, 分析結果顯示在特定根系生長密度下,邊坡之穩定性一致地隨根面積 比之增加而提升。另外,在同一根面積比條件下,根系生長密度較密 集且根徑較細之根系對坡面穩定性之貢獻度可能不及生長較疏鬆且 根徑較粗者。 根系~加勁等值層轉換模式分析部分,分析結果顯示在小坡高情 況下(坡高H=5 m),根系對於各種坡度之坡面加勁效果差異不大。此 暗示隨著坡度逐漸增加,含根坡面及無根坡面之穩定性安全係數FSr 值及FSo 值二者約以一個相近之比例逐漸降低。在中等坡高情況下(坡 高H=10 m),隨著坡度之增加,RFS 值逐漸降低,亦即FSr 之降低速 率較FSo 者為快。最後,在大坡高情況下(坡高H=15 及20 m),RFS 值隨著坡度之增加而提高,亦即FSr 之降低速率較FSo 者為慢。換言 之,在大坡高之邊坡上,植生根系愈能呈現其加勁效果。 III 在邊坡穩定性影響因子之參數研究中可發現,覆土層厚度ds 之改 變對邊坡穩定性之影響最大即靈敏度最高,而邊坡坡度α次之。 在桂竹根系拉拔試驗方面,以試驗之結果將尖峰拉拔抗力(Pr)對 株齡 (Yr)、胸高直徑 (D)、斷根數 (n)、土壤水分含量 (ω)進行迴歸 分析,結果與適用範圍如下: Pr=165.51-3.54Yr+11.23D+2.85n-22.24w, R2=0.936 適用範圍: Yr =1~3 (年) D =35~70 (mm) n =1~4 (根) ω =7~18 (%) 綜合桂竹林根系現地調查及拉拔試驗結果顯示,桂竹林地下根莖 盤根錯節能將土壤緊密固結而根系則可提供力學加勁效果。而桂竹林 坡地崩塌,主要肇因於巨大外力或地震力作用下之地下部根莖受拉破 壞,以及在降雨急速注入土層裂縫時之土壤強度弱化。一般而言,桂 竹林地之崩塌與破壞及土壤流失並不易發生。
Due to the frequent natural hazard and geological characteristics the slope land in Taiwan is prone to collapse and it becomes a critical concern to the public general and government sectors. It is rare that the study of root system and its influence on the vegetated slope. In such circumstances, this study attends to evaluate the stability of vegetated slope with Makino bamboo root system quantitatively using the field investigation and mechanics tests. Employing the proposed root ~ reinforcement and root ~ reinforced equivalence layer conversion models; it is feasible to simulate the strength properties of root system in the slope stability analysis. In addition, Using the concept of Relative Factor of Safety (RFS=FSr/FSo), the stability of vegetated slope with Makino bamboo root system relates to the bared slope can be evaluated quantitatively. In which, the FSr and FSo represent the factor of safety of the slope with and without root system. Moreover, the parametric studies of influence factors on the vegetated slope with Makino bamboo root system encompasses slope height, slope inclination, root density and thickness of overburden soil are also performed. For the analyses using root ~ reinforcement conversion model, it is found the RFS value is descending with the increase of overburden thickness ds and eventually approaches 1.0. This implies the reinforcement effect of root system on vegetated slope turns to be unapparent when the overburden becomes thicker and promotes the sliding potential of soil mass at shallow depth. The calculation results also indicate that for a specific root growth density the stability of slope is definitely promoted when the root area ratio is increased. On the other hand, for a specific root area ratio the contribution of a denser growth and finer diameter of root system to the slope stability is lower than that of looser growth and coarser diameter. For the analyses using root ~ reinforced equivalence layer conversion model, the analyses indicate for a slope with small slope height (H=5 m) the reinforcement effect of root system on the slope stability or the variation of RFS value is insignificant for various slope inclinations. This implies the factor of safety for both slopes with and without root system FSr and FSo decrease simultaneously under a similar descending rate as the slope inclination increases. Further, for a slope with medium slope height (H=10 m) the RFS value decreases as the slope inclination increases, namely, the descending rate of FSr is faster than that of FSo. Eventually, for a slope with large slope height (H=15及20 m) the RFS value is greatly promoted as the slope inclination increases and this reveals the descending rate of FSr is slower than that of FSo. Accordingly, the reinforcement effect of root system can be effectively mobilized in a high slope rather than in a low slope. From the parametric studies of influence factors on the stability of vegetated slope with Makino bamboo root system, it is found that the stability of slope shows a highest sensitivity to the overburden thickness and secondary followed by the slope inclination. For the in-situ pull-out test of Makino bamboo root system, the peak pull-out force (Pr) can be expressed in terms of plant age(Yr) , root diameter adjacent to ground surface (D), number of root breakage (n), and soil water content (ω) by linear regression analysis as follow: Pr=165.51-3.54Yr+11.23D+2.85n-22.24w, R2=0.936 Suitability for : Yr =1~3 (year) D =35~70 (mm) n =1~4 ω =7~18 (%) Conclusively, the field investigation and in-situ pull-out test indicate the Makino bamboo possesses an extremely complicate and random root pattern in the ground and the tightly consolidated soil~root system associated with the root reinforcement can effectively stabilize the slope in a secure situation. However, the collapse failure can be mainly resulted from the action of gigantic earthquake vibration force which leads to a breakage of root system or the infiltration of rainwater into the fissure of strata which causes a decrease of shear strength of soil mass. In general, the slope with Makino bamboo root system can sustain the collapse failure and soil loss to some extends.
URI: http://hdl.handle.net/11455/34501
其他識別: U0005-0908200714530500
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.