Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34522
標題: A study of feasibility for using AnnAGNPS model to simulate runoff and sediment yield in a watershed
AnnAGNPS模式推估集水區逕流量與泥砂產量之適用性探討
作者: Hsu, Huan-Shuo
許桓碩
關鍵字: Shih-man Reservoir
石門水庫
AnnAGNPS
Runoff
Sediment yield yield
農業非點源污染模式
地表逕流
泥砂產量
出版社: 水土保持學系所
引用: 1.王小燕 (1997) 阿公店水庫集水區植生緩衝帶配置之研究。國立中興大學水土保持研究所碩士論文,p.18-24。 2.行政院農委會水土保持局2006,石門水庫土砂評量與整治率評估模式建立報告書,p.3-4。 3.林俐玲、祝瑞敏 (1992) 結合農業非點源污染模式與地理資訊系統做為集水區評估工具之探討。水土保持學報,24(2):11-34。 4.林俐玲、陳勝全 (1998) 農業小集水區開發整治後土壤流失量與逕流之評估。水土保持學報,30(2):143-175。 5.林俐玲、馮美禎(2002),「台灣集水區泥砂遞移率之探討」,國立中興大學水土保持學系碩士論文,p68。 6.洪轟誌、陳威仲、高正忠、陳英杰、劉克勤、蔡政賢 (1996) AGNPS非點源污染模式本土化系統之發展。第九屆環境規劃與管理研討會論文集,p.45-52。 7.胡毓解(2004)「農業非點源污染模式之應用—以萬安溪集水區為例」,國立屏東科技大學水土保持系碩士論文,p74-76 8.夏禹九、陳萓蓉(2000),「農業非點源汙染模式應用於河川保護帶配置之探討」,中華水土保持學報,30(1):1-12。 9.萬鑫森、黃俊義(1981),「台灣溪北部土壤沖蝕及流失量之估算」,中華水土保持學報,12(1):57-67。 10.謝兆申、王明果(1991),「台灣地區主要土壤圖輯」,p.224-237。 11.謝漢欽、鄭祁全 (1995) 福山地區SPOT多期影像植生綠度分析。林業試驗所研究季刊,10(1):105-120。 12.游繁結、洪毓華 (1992) AGNPS模式應用於小集水區推估土壤流失量與逕流量之探討。水土保持學報,24(2):35-56。 13.盧昭堯、吳藝昀(2003),台灣天然雨滴粒徑分布及年等降雨沖蝕指數圖之修訂,國立中興大學土木工程學系碩士論文,p.86。 14.劉熙,(1985) 果園土壤管理,五洲出版社,p.264。 15.ARC/INFO (1992), Understanding GIS (1992) Environmental Systems Research Institution Inc. 16.Aitken, A.P., (1973) Assessing systematic errors in rainfall-runoff models. Journal of Hydrology. 20:121–136. 17.Ambar, K., and B. Mitchell. (1997) Soil erosion and sediment yield in forest and agroforestry areas in West Java, Indonesia. Journal of Soil and Water Conservation. 52(4):376-380. 18.Baginska, B., W.M. Home, and P.S. Cornish. (2003) Modelling nutrient transport in Currency Creek, NSW with AnnAGNPS and PEST. Environmental Modelling and Software. 18:801-808. 19.Bhuyan, S.J., J.K. Koelliker, L.J. Marzen, and J.A. Harrington. (2003) An integrated approach for water quality assessment of a Kansas watershed. Environmental Modelling and Software. 18:473-484. 20.Brown, D.G., L. Bian, and S.J. Walsh. (1993) Response of a distributed watershed model to variations in input data aggregation levels. Computers and Geosciences 19(4):499-509. 21.Dunne, T. and L.B. Leopold (1978), “Water in environmental planning,” New York: WH Freeman. 22.Feezor, D.R., M.C. Hirschi, and B.J. Lesikar. (1989). Effect of cell size on AGNPS prediction. In:ASAE Winter Meeting in New Orleans, ASAE Paper No.89-2662. 23.FitzHugh, T.W., and D.S. Mackay. (2000) Impacts of input parameter spatial aggregation on an agricultural nonpoint source pollution model. Journal of Hydrology. 236:35–53. 24.Grunwald, S., and L.D. Norton. (2000) Calibration and validation of a non-point source pollution model. Agricultural Water Management. 45:17-39. 25.He, C., C. Shi, C. Yang, and B.P. Agosti. (2001) A windows-based GIS–AGNPS interface. Journal of The American Water Resources Association 37(2):395–406. 26.He, C.H., (2003) Integration of geographic information systems and simulation model for watershed management. Environmental Modelling & Software. 18:809–813. 27.James, L.D., and S.J. Burgess. (1982) Selection calibration, and testing of hydrologic models. In:Hann, C.T., Johnson, H.P., Brakensiek, D.L. (Eds), Hydrologic Modelling of Small Watershed. ASAE, St, Joseph, MI. 28.Jennifer, B.S., B. David, E.L. Usery, V. George, R.C. Lowrance, and J.M. Sheridan. (2001) Use of the AnnAGNPS model for a watershed in the coastal plain of Georgia. 9th National Nonpoint Source Monitoring Workshop, p.27-30. 29.Jenson, S. K. and J. O. Domingue (1988), “Extracting Topographic Structure form Digital Elevation Data for Geographic Information Analysis,” Photogrammetric Engineering & Remote Sensing, 54(11):1593-1600. 30.Knisel, W.G., (1980) CREAMS:A field-scale model for chemicals, runoff and erosion from agricultural management systems. Conservation Research Report. USDA-SEA:Washington, D.C. p.26. 31.Leblon, B., L. Gallanr, F. Bonn, and A. Peasant. (1996) Corn residue assessment from optical and thermal infrared ground-based measurement. Canadian Journal of Remote Sensing. 22(2):198-207. 32.Legates, D.R., and G.J. McCabe. (1999) Evaluating the use of “goodness- of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research. 35(1):233–241. 33.Lenzi, M.A., and M.D. Luzio. (1997) Surface runoff, soil erosion and water quality modeling in the Alpine watershed using AGNPS integrated with a Geographic Information System. European Journal of Agronomy. 6:1-14. 34.Leon, L.F., D.C. Lam, D.A. Swayne, G.J. Farquhar, and E.D. Soulis. (2000) Integration of a nonpoint source pollution model with a decision support system. Environmental Modelling and Software. 15:249-255. 35.Liao, H.H., and U.S. Tim. (1997) An interactive modeling environment for nonpoint source pollution control. Journal of the American Water Resources Association. 33(3):1-13. 36.Lin, C.Y., W.T. Kun, and W.C. Chou. (2002) Soil erosion prediction and sediment yield estimation the Taiwan experience. Soil and Tillage Research. 68:143-152. 37.Lutz, W., (1984) Berechnung von Hochwasserabfluessen unter Anwendung von Gebiets-kenngroessen. Ph.D. Thesis, Karlsruhe University, Germany. p.235. 38.Ma, Y.H., B. Jon, J.M. Asher, Y. Shi, and D. Ouyang. (2001) NPS Assessment Model:An Example of AGNPS application for watershed erosion and phosphorus sedimentation. Journal of Spatial Hydrology 1(1):1-8. 39.Maniak, U., (1992) Regionalisierung von Parametern Hochwasserabfluβ ganglinien. p.325-332. In:H.-B. Kleeberg Regionalisierung in der Hydrologie, Deutsche Forschungsgemeinschaft, VCH Verlagsgemeinschaft, Weinheim. 40.Moore, I.D., and G.J. Burch. (1986) Physical basis of the Length-Slope Factor in the Universal Soil Loss Equation. Soil Sci. Soc. Am. J., 50:1294-1298. 41.Mostaghimi, S., S.W. Park, R.A. Cooke, and S.Y. Wang. (1997) Assessment of Management Alternatives on a small Agricultural watershed, Water Resources Research. 31(8):1867-1878. 42.Nash, J.E., and J.V. Sutcliffe. (1970) River flow forecasting through conceptual models. Part 1. A discussion of principles. Journal of Hydrology. 10:282-290. 43.Ndiritu, J.G., and Daniell, T.M. (1997). An improved genetic algorithm for rainfall-runoff model calibration and function optimization. In: Proceedings of the International Congress on Modelling and Simulation MODSIM’97, vol. 4, pp. 1683-1688. 44.Panuska, J.C., I.D. Moore, and L.A. Kramer. (1991) Terrain analysis:Integration into the agricultural nonpoint source (AGNPS) pollution model. Journal of Soil and Water Conservation. 46(1):59-64. 45.Pekarova, P., A. Konicek, and P. Miklanek. (1999) Testing of AGNPS model application in Slovak microbasins. Phys. Chem. Earth (B), 24(4):303-305. 46.Penman, H.L., 1948, “Natural Evaporation from Open Water, Bare Soil and Grass”, Proc. R. Soc. London Ser. A, Vol. 193, pp.120-145. 47.Rode, M., and H.G. Frede. (1997) Modification of AGNPS for agricultural land and climate conditions in Central Germany. Journal Environmental Quality. 26:165-172. 48.Ronald, L.B., and F.D. Theurer. (2001) AnnAGNPS Technical Processes. National Sedimentation Laboratory. p.1-90. 49.SCS. (1986) Technical Release 55:Urban hydrology for small watersheds. Soil Conservation Service, USDA. p.17. 50.Shrestha, S., Mukand S. Babel, Das Gupta, A., Kazama, F.(2005).Evaluation of annualized agricultural nonpoint source model fora watershed in the Siwalik Hills of Nepal. Environmental Modelling and Software. Volume 21, Issue 7, July 2006, Pages 961-975. 51.Shepherd, R.G., and Geter, W.F., 1995. Verification, calibration, validation, simulation: protocols in groundwater and AGNPS modeling.In: Proceedings of the International Symposium: Water Quality Modeling, April 2e5, Orlando, Florida. American Society of Agricultural Engineers, pp. 87-91. 52.Srinivasan, R., and B.A. Engel. (1994) A spatial decision support system for assessing agricultural non-point source pollution. Water Resource Bulletin. 30(3):441-452. 53.Vieux, B.E., and S. Needham. (1993) Nonpoint-pollution model sensitivity to grid-cell size. Journal of Water Resources Planning and Management. 119(2):141-157. 54.Wischmeier, W., and D.D. Smith. (1978) Predicting rainfall erosion losses - A guide to conservation planning. USDA, Handbook No.537. 55.Young, R.A., C.A. Onstad, D.D. Bosch, and W.P. Anderson. (1989) AGNPS:A nonpoint-source pollution model for evaluating agricultural watersheds. Journal of Soil and Water Conservation. 44(2):168-173. 56.Young, R.A., C.A. Onstad, D.D. Bosch, and W.P. Anderson. (1994) AGNPS, Agricultural Nonpoint Source Pollution Model, Version 4.03:AGNPS User''s guide. USDA-NRS-NSL, Oxford, Mississippi. p.38. 網路資料 57.http://grunwald.ifas.ufl.edu/Projects/AGNPS/agnps.htm 58.http://gweb.wra.gov.tw/wrweb/WaterResource.htm
摘要: Various kinds of calculating watershed models were developed to provide the help for designing the watershed. The functions of models could help the researcher to estimate the environmental influence and impact. The study mainly probes into the application of AnnAGNPS through simulating the runoff and sediment yield at the upper watershed of Pai-shih River in Shih-man Reservoir.By using the sensitivity analyze of AnnAGNPS for runoff and sediment yield, the numbers from high to low showed two outcomes. The first about runoff is CN value, field capacity, and hydraulic conductivity of saturated soil; the other about sediment yield is cover ratio, field capacity, Manning''s n and live root mass. Three steps were used to evaluate AnnAGNPS. First, using the data in 1997 related to the runoff and sediment yield corrected the parameter. Second, using the data from 1998 to 2000 tested and verified the estimation. Final, using CE, CP, and ED estimated the application. Moreover, the results after testing the runoff were showed by the ordering of time from 1998 to 2000, and combined. Separately, CE is 0.65, -0.38, 0.38, and 0.45. CP is 0.35, 1.38, 0.76, and 0.52. ED is -14.13%, 39.08%, 18.89%, and 11.99%. However, the following results referred to the sediment yield. CE is 0.94, 0.30, 0.87, and 0.92. CP is 0.06, 0.70, 0.13, and 0.08. ED is 13.85%, 36.09%, 21.51%, and 19.24%. Besides, CE is between 0.24 and 0.92, as well as ED is within 40% when the researcher used monthly data to evaluate.From CE and ED, the researcher found AnnAGNPS did not take time into consideration, but focused on estimating the sum of the runoff and sediment yield in the watershed. Furthermore, by integrating the deviations as evaluating AnnAGNPS, three types of deviation are categorized: recession curve duration, rainfall type, and base flow.
為有效協助規劃集水區,國內外發展了許多集水區歷程演算模式,此類模式的發展有助於評估集水區內各種開發行為對環境所帶來之衝擊及影響。本研究主要探討以年農業非點源污染模式(AnnAGNPS)模擬石門水庫上游白石溪集水區內逕流量及泥砂產量之適用性。模式敏感度分析結果,對逕流量之敏感度由高至低依序為逕流曲線數值(CN值)、田間容水量及飽和傳導度;而對泥砂產量之敏感度由高至低依序為植物覆蓋率、田間容水量、曼寧n值及根系單位面積鮮重。以1997年間實測流量與泥砂量對模式內各參數進行校準,再以1998~2000年間實測資料對模式之推估值進行驗證,並以效率係數(CE)、性能係數(CP)及估計差異(ED)評估模式之適用性。驗證期間各年逕流量推估結果依時間排序其CE分別為0.65、-0.38及0.24,合併1998~2000三年推估結果後得CE為0.45;依時間排序其CP分別為0.35、1.38及0.76,合併1998~2000三年推估結果後得CP為0.52;ED依時間排序分別為-14.13%、39.08%及18.89%,1998~2000年為11.99%;泥砂產量推估結果:依時間排列CE值為0.94、0.30及0.87,1998~2000年為0.92;依時間排列CP值為0.06、0.70及0.13,1998~2000年為0.08;ED值分別為13.85%、36.09%、21.51%以及1998~2000年的19.24%。以單月產量進行評估時,CE值介於0.24~0.92之間,ED值均在40%以內。CE值與ED值顯示出模式並未深入考慮時間尺度,而是以推估集水區內逕流與泥砂之總產量為重點。綜合驗證期間模式之誤差原因,歸類為下列三種:1.退水延時誤差 2.降雨類型誤差 3.基流誤差。
URI: http://hdl.handle.net/11455/34522
其他識別: U0005-1708200718164700
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.