Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34535
標題: Effect and Modeling of Microbial Growth on Saturated Hydraulic Conductivity of the Porous Media
多孔介質中微生物生長對飽和水力傳導度影響及其模式建立
作者: Tu, Yi-Te
杜怡德
關鍵字: Pseudomonas fluorescens
Pseudomonas fluorescens
土壤複合菌種
飽和水力傳導度
吸光度
生物性阻塞
包覆係數β
生物孔隙比α
飽和水力傳導度比Ks/Kso
soil microorganisms
saturated hydraulic conductivity
bioclogging
Turbidity Method
The colony enveloping space
Enveloping factor β
biovolume ratio α
saturated hydraulic conductivity ratio Ks/Kso
出版社: 水土保持學系所
引用: 參考文獻 中文部分 圖書 1. 林良平(1997)土壤微生物學。國立編譯館主編,南山堂出版社發行。 2. 許光輝等(1991)微生物生態學,東南大學出版。 3. 程東升(1993)森林微生物生態學,東北林業大學出版社。 4. 萬鑫森譯(1987)基礎土壤物理學。國立編譯館主編,茂昌圖書有限公司發行。 5. 鍾楊聰、方繼、許元勳、陳啟楨、林建谷、林春福、巢家莉(2002)基礎微生物學,偉明圖書公司出版。 期刊論文 6. 陳文福、張益生、田巧玲(1999)礫石層粒徑與透水係數之關係,台灣水利47(4):58-65。 7. 陳念軍(1970)滲透現象及其影響因子的研究,水土保持學報3:18-23。 8. 曾泰源(2000)電導量測技術於微生物檢測之應用,國立成功大學醫學工程研究所碩士論文。 9. 黃雅嫻(1991)多孔介質中基質與微生物傳輸模式之研究,國立台灣大學環境工程所碩士論文。 10. 黃誌川(1999)未飽和層土壤水分移動行為之分析,國立台灣大學地理學系碩士論文。 11. 萬鑫森(1969)植生及覆蓋對坡地土壤滲性之影響,台灣水土保持試驗研究彙刊1:421-428。 12. 董瑞安(1993)微量含氯有機物在地下水中生物轉換及傳輸模式之研究,國立台灣大學環境工程研究所博士論文。 13. 劉玉婷、彭宗仁、劉滄棽(2001)以土壤質地探討台灣不同土類飽和水力傳導度之初步研究,第四屆地下水資源與水質保護研討會。 Books 14. Alexander, M. (1991) Introduction to Soil Microbiology, 2nd ed, New York: Wiley. 15. Arya, L. M., and T. S. Dierolf (1992) Predicting soil moisture characteristics from particle-size distribution:An improved method to calculate pore radii from particle radii. p115-125. In:van Genuchten et al.(ed.) Proc. Int. Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. U.S. Salinity Laboratory, Riverside, CA. 16. Arya, L. M., J. C. Richter, and S. A. Davidson (1982) A comparison of soil moisture characteristic predicted by the Arya-Paris model with laboratory-measured data. Agristars Tech. Rep. SM-L1-04247, JSC-17820. NASA-Johnson Space Center, Houston, TX. 17. Burges, A. (1958) Microorganisms in the Soil. Hutchinson Univ. Lib., London. 18. Campbell, G. S. (1985) Soil Physics with BASIC. Developments in Soil Science, 14. Elsevier, Amsterdam. 19. Chapelle, F. H. (1993) Ground-Water Microbiology &Geochemistry. John Wiley & Son, New York, NY, USA. 20. Darcy, H. (1856) Les Fontaines Publigue de la ville de Dijon. Dalmont, Paris. 21. Gupta, S. C., and R. P. Ewing (1992) Modeling water retention characteristics and surface roughness of tilled soils. p379-388. In: van Genuchten et al.(ed.) Proc. Int. Workshop on Indirect Methods 22. Klute, A., and C. Dirksen (1986) Hydraulic conductivity and diffusivity:Laboratory methods. In:A. Klute (Ed.), Methods of Soil Analysis. Part 1. Monograph 9. American Society of Agronomy, Madison, WI. 23. Miyazaki, T. (1993) Water flow in soils. Marcel Decker Inc, New York. 24. Stephens, D. B., S. Tyler, and D. Watson (1984) Influence of entrapped air on field determination of hydraulic properties in the vadose zone. In: Proc., Confer, on characterization and monitoring in the vadose zone, National Water Well Association, Washington, 57-76. 25. Thullner, M. (2001) Experimental and numerical investigations of bioclogging in porous media using two-dimensional flow fields, A dissertation submitted to the SWISS Federal institute of Technology Zurich for the degree of Doctor of Nature Science. 26. Vukovic, M., and A. Soro (1992) Determination of hydraulic conductivity of porous media from grain-size composition. Water Resources Publications. Journal Articles 27. Ahuja, L.R., J. W. Naney, P. E. Green, and D. R. Nielsen (1984) Macroporosity to characterise spatial variability of hydraulic conductivity and effects of land management. Soil Sci. Soc. Am. J. 48:699– 702. 28. Aimrun, W., M. S. M. Amin, and S. M. Eltaib (2004) Effective porosity of paddy soils as an estimation of its saturated hydraulic conductivity. Geoderma. 121:197-203. 29. Alexander, M. (1985) Biodegradation of Organic Chemical. ET&T, 18(2):106-111. 30. Allison, L. E. (1947) Effect of microorganism on permeability of soil under prolonged submergence. Soil Science. 63:439-450. 31. Arya, L. M., and J. F. Paris (1981) A physico-empirical model to predict soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 45:1023–1030. 32. Arya, L. M., F. J. Leij, M. Th. van Genuchten, and P. J. Shouse (1999a) Scaling parameter to predict the soil water characteristic from particle-size distribution data. Soil Sci. Soc. Am. J. 63:510–519. 33. Arya, L. M., F. J. Leij, P. J. Shouse, and M. Th. van Genuchten (1999b) Relationship between the hydraulic conductivity function and the particle-size distribution. Soil Sci. Soc. Am. J. 63:1063–1070. 34. Attila, N., J. R. Walter, and A. P. Yakov (2005) Influence of Organic Matter on the Estimation of Saturated Hydraulic Conductivity .Soil Sci. Soc. Am. J . 69:1330-1337. 35. Basile, A., and G. D’Urso (1997) Experimental corrections of simplified methods for predicting water retention curves in clay-loamy soils from particle-size determination. Soil Technology. 10:261-272. 36. Bavaye, P., and A. Dumestre (1998) Comments on:”Experimental study on the reduction of soil hydraulic conductivity by enhanced biomass growth”. Soil Science. 163(9):759-761. 37. Bloemen, W. (1980) Calculation of hydraulic conductivities of soils from texture and organic matter content. Z. Pflanzenernähr. Bodenkd. 43:581-605. 38. Borden, R.C., and P.B. Bedient (1986) Transport of Dissolved Hydrocarbons Influenced by Oxygen-Limited Biodegradation 1.Theoretical Development. Water Resour. Res. 22(13):973 –1982. 39. Bouma, J. (1989) Using soil survey data for quantitative land evaluation. Adv. Soil Sci. 9:177–213. 40. Buczko, U., and H. H. Gerke (2005) Evaluation of the Arya and Paris Model for estimating water retention characteristics of lignitic mine soils. Soil Sci. 142:483–494. 41. Bullitt, E., and Makowski, L. (1995) Structural polymorphism of bacterial adhesion pili. Nature. 373:164-167. 42. Comegna, V., P. Damiani, and A. Sommella (1998) Use of a fractal model for determining soil water retention curves. Geoderma. 85:307-323. 43. Cornelis, W. M., J. Ronsyn, M. Van Meirvenne, and R. Hartmann (2001) Evaluation of pedotransfer functions for predicting the soil moisture retention curve. Soil Sci. Soc. Am. J. 65:638–648. 44. Cosby, B. J., G. M. Homberger, R. B. Clapp, and T. R. Ginn (1984) A statistical exploration of the relationships of soil moisture characteristics to the physical properties of soil. Water Resour. Res. 20:682-690. 45. Costerton, J. W., G.G. Geesey, and K. J. Cheng (1978) How bacteria stick. Scient. Am. 238:86-95. 46. Cunningham, A. B., W.G. Characklis, F. Abedeen, and D. Crawford (1991) Influence of Biofilm Accumulation on Porous Media Hydrodynamics. Environmental Science & Technology. 25:1305-1311. 47. D. A. O’Connell and P. J. Ryan (2002) Prediction of three key hydraulic properties in a soil survey of a small forested catchment. Aust. J. Soil. Res. 40:191–206. 48. Deleo, P. C., and P. Baveye (1997) Factors affecting protozoan predation of bacteria clogging laboratory aquifer microcosm, Geomicrobiol. J. 14:127-149. 49. Dunn, G. H., and R. E. Phillips (1991) Equivalent diameter of simulated macropore systems during saturated flow. Soil Sci. Soc. Am. J. 55:1244-1248. 50. Dupin, H. J., and P. L. McCarty (2000) Impact of Colony Morphologies and Disinfection on Biological Clogging in Porous Media. Environmental Science & Technology. 34 (8):1513-1520. 51. Dupin, Hubert J., P. K. Kitanidis, and P. L. McCarty (2001) Pore-scale modeling of biological clogging due to aggregate expansion: A material mechanics approach. Water Resour. Res. 37(12):2965 –2980. 52. Dupin, Hubert J., P. K. Kitanidis, and Perry, L. McCarty, (2001) Simulations of two-dimensional modeling of biomass aggregate growth in network models. Water Resour. Res. 37(12):2981-2994. 53. Essa, M.G., S. Farooq, and G.F. Nakhla (1996) Simulation of In Situ Bioremediation of Contaminated Groundwater I. Impact of Sand Size. Water, Air and Soil Pollution. (87):267 281. 54. Ewing, R. P., and S. C. Gupta (1994) Pore-scale network modeling of compaction and filtration during surface sealing. Soil Sci. Soc. Am. J. 58:712-720. 55. Farooq, S., G. F. Nakhla, and M.H. Essa (1996) Simulation of In Situ Bioremediation of Contaminated Groundwater II. Role of Contaminant Concentration. Water,Air, and Soil Pollution. 87:283 295 56. Flether, M. (1986) Measurement of glucose utilization by Pseudomonas fluorescens that are free-living and that are attached to surface. Appl. Environ. Microbiol. 52(4):672-676. 57. Franzmeier, D.P. (1991) Estimation of hydraulic conductivity from effective porosity data for some Indiana soils. Soil Sci. Soc. Am. J. 55:1803–1891. 58. Guimares, V. F., I. V. Cruz, A. N. Hagler, L. C. Mendonca-Hagler, and J. D. van Elsas (1997) Transport of a genetically modified Pseudomonas fluorescens and its parent strain through undisturbed tropical soil cores. Appl. Soil. Ecol. 7:41-50. 59. Hambrick, G.A.Ⅲ., R. D. DeLaune, and W. H. Jr. Patrick (1980) Effect of Estuarine Sediment pH and Oxidation-Reduction Potential on Microbiol Hydrocarbon Degradation. Appl. Environ. Microbiol. 40:365-369 60. Harvey, R. W., R. L. Smith, and L. George (1984) Effect of organic contamination upon microbial distributions and heterotrophic uptake in a Cape Cod, Mass., aquifer. Appl. Envirn. Microbiol. 48:1197-1202. 61. Hazen, A. (1911) Discussion:dams on sand foundations. Transactions, American Society of Civil Engineers. 73:1-199. 62. Hendry, M. J., J. R. Lawrence, and P. Maloszewski (1997) The role of sorption in the transport of Klebsiella oxytoca through saturated silica sand. Ground Water. 35:574-584. 63. Jennings, D.A., J.N. Petersen, R. S. Skeen, B.S. Hooker, B. M. Peyton, D. L. Johnstone, and D. R. Yonge (1995) Effects of slight variations in nutrient loadings on pore plugging in soil columns. Applied Biochemistry and Biotechnology. 51:727-734. 64. Jones, S. B., and D. Or. (1998) Design of porous media for optimal gas and liquid fluxes to plant roots. Soil Sci. Soc. Am. J. 62:563 - 573. 65. Karen, G. D., and S. F. Yveet (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25(5):943-948. 66. Lascano, R. J., and L. Stroosnijder (1993) A simple method for predicting the spatial distribution of soil hydraulic properties. Soil Sci. Soc. Am. J. 57:1479 - 1484. 67. Lewis, M.R., and W. L. Powers (1939) Study of factors affecting infiltration. Soil Sci. Soc. Am. Proc. 3:334-337. 68. Marshall, K. C (1988) Adhesion and growth of bacteria at surfaces in oligotrophic habitats. Canadian Journal of Microbiology. (34):503-506. 69. Mbagwu, J. S. C. (1995) Saturated hydraulic conductivity in relation to physical properties of soils in the Nsukka Plains, southeastern Nigeria. Geoderma. 68:51-66. 70. Messing, I., J. Iwald, D. Lindgren, K. Lindgren, L. Nguyen, and T.S. Hai (2005) Using pore sizes as described in soil profile descriptions to estimate infiltration rate and saturated hydraulic conductivity. Soil Use and Management. 21 (3):276–277. 71. Miyazaki, T. (1996) Bulk density dependence of air entry suctions and saturated hydraulic conductivities of soils. Soil Sci. 161:484-490. 72. Molz, F.J., M. A. Widdowson, and L. D. Benefield (1986) Simulation of microbial growth dynamics coupled to nutrient and oxygen transport in porous media. Water Resour. Res. 22(8):1207-1216. 73. Naime, J. M., C. M. P. Vaz, and A. Macedo (2001) Automated soil particle size analyzer based on gamma-ray attenuation. Computers and Electronics in Agriculture. 31:295–304. 74. Nemes, A. (2002) Unsaturated soil hydraulic database of Hungary: HUNSODA. Agroke´mia e´ s Talajtan. 51:17–26. 75. Obstetal, U., and A. Hozapfel-Pschorn (1988) Biochemical Testing of Groundwater. Water. Sci. Tech. 20(3):101-107. 76. Okubo, T., and J. Matsumoto (1983) Effect of infiltration rate on biological clogging and water quality changes during artificial recharge. Water Resour. Res. 17:813-821. 77. Powelson, D. K., and A. L. Mills (1998) Water saturation and surfactant effects on bacterial transport in sand columns. Soil Sci. 163:694-704. 78. Ragusa, S.R., D.S. de Zoysa, and P. Rengasamy (1994) The effect of microorganisms, salinity and turbidity on hydraulic conductivity of irrigation channel soil. Irrigation Science. 15:159-166. 79. Gupta, R. J., and D. Swartzendruber (1962) Flow-associated reduction in the hydraulic conductivity of quartz sand. Soil Sci. Soc. Am. Proc. 26(1):6 - 10. 80. Rengasamy, P., A. J. McLeod, and S. R. Ragusa (1996) Effect of dispersible soil clay and algae on seepage prevention from small dams. Agricultural Water Management. 29:117-127. 81. Reynolds, W. D., D. A. Brown, S. P. Mathur, and R. P. Overend (1992) Effect of in-situ gas accumulation on the hydraulic conductivity of peat. Soil Sci. 153:397-408. 82. Reynolds, W. D., and D. E. Elrick (1986) A method for simultaneous in-situ measurement in the vadose zone of field saturated hydraulic conductivity, sorptivity, and the conductivity-pressure head relationship. Ground Water Monitoring Review. 6:84-95. 83. Rice, R.C. (1974) Soil clogging during infiltration of secondary effluent. Journal of Water Pollution Control Federation. 46:708-716. 84. Rittmann, B. E., and P. L. McCarty (1980a) Model of Steady- state-biofilm Kinetics. Biotech. Bioeng. 22:2343-2357. 85. Rittmann, B. E., and P. L. McCarty (1980b) Evaluation of Steady- state-biofilm Kinetics .Biotrch. Bioeng. 22:2359-2373. 86. Sanchez de Lozada., P. Vandevivere, P. Bavaye, and S. Zinder (1994) Decrease of the hydraulic conductivity of sand columns by Methanosarcina barkeri. World Journal of Microbiology and Biotechnology. 10:325-333. 87. Saxton, K. E., W. J. Rawls, j. S. Romberger, and R. I. Papendick (1986) Estimating generalized soil-water characteristics from texture. Soil Sci. Soc. Am. J. 50:1031-1036. 88. Schaap, M. G., F. J. Leij, and M. Th. van Genuchten (1998) Neural Network Analysis for Hierarchical Prediction of Soil Hydraulic Properties. Soil Sci. Soc. Am. J. 62:847-855. 89. Schuh, W.M., R. L. Cline, and Sweeny, M.D. (1988) Comparison of a laboratory procedure and a textural model for predicting in situ soil water retention. Soil Sci. Soc. Am. J. 52:1218-1227. 90. Seki, K., and T. Miyazaki (2001) A Mathematical Model for Biological Clogging of Uniform Porous Media. Water Resour. Res. 37(12): 2995-2999. 91. Seki, K., M. Thullner, J. Hanada, and T. Miyazaki (2006) Moderate bioclogging leading to preferential flow paths in biobarriers. Ground Water Monitoring & Remediation. 26 (3):68–76. 92. Seki, K., T. Miyazaki, and M. Nakano (1996) Reduction of hydraulic conductivity due to microbial effect. Trans. Jpn. Soc. Irrig. Drain. Reclam. Eng. 181:137-144. 93. Seki, K., T. Miyazaki, and M. Nakano (1998) Effect of microorganisms on hydraulic conductivity decrease in infiltration. European Journal of Soil Science. 49:231-236. 94. Seki, K., T. Suko, and T. Miyazaki (2002) Bioclogging of glass beads by bacteria and fungi 17th WCSS, 14-21 August 2002, Thailand no.1244. 95. Shaw, J. C., B. Bramhill, N. C. Wardlaw, and J. W. Costerton (1985) Bacterial fouling in a model core system. Applied and Environmental Microbiology. 49(5):693-701. 96. Tamari, S., J. H. M. Wosten, and J. C. Ruiz-Suarez (1996) Testing an artificial neural network for predicting soil hydraulic conductivity. Soil Sci. Soc. Am. J. 60(6):1732-1744. 97. Taylor, S. W., and P. R. Jaffé (1990b) Biofilm growth and the related changes in the physical properties of a porous medium 2. Permeability. Water Reaour. Res. 26:2161-2169. 98. Taylor, S. W., and P. R. Jaffé (1991) Enhanced In-Situ Biodegradation and Aquifer Permeability Reduction. J. Environ. Eng 117(1):25-46. 99. Taylor, S. W., P. C. Milly, and P. R. Jaffé (1990) Biofilm growth and the related changes in the physical properties of a porous medium 2. Permeability. Water Resour. Res. 26:2161-2169. 100. The description of Pseudomonas fluorescens(http://www.atcc.org/common/catalog/numSearch/numResults.cfm?atccNum=13525) 101. Thomas, R.E., W. A. Schwartz, and T.W. Bendixen (1966) Soil chemical changes and infiltration rate reduction under sewage spreading. Soil Sci. Soc. Am. Proc. 30:641-646. 102. Tomasella, J., Ya. Pachepsky, S. Crestana, and W. J. Rawls (2003) Comparison of Two Techniques to Develop Pedotransfer Functions for Water Retention. Soil Sci. Soc. Am. J. 67(4):1085 - 1092. 103. Trulear, M. G., and Characklis, W.G. (1982) Dynamics of biofilm processes, J. Water Poll, Cont. Fed. 54:1288-1301. 104. Van Genuchten, M. Th. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44:892-898. 105. Vandevivere, P. and P. Bavaye (1992a) Effect of bacterial extracellular polymers on the saturated hydraulic conductivity of sand columns. Applied and Environmental Microbiology. 58(5): 1690-1698. 106. Vandevivere, P. and P. Bavaye (1992b) Relationship between transport of bacteria and their clogging efficiency in sand columns. Applied and Environmental Microbiology. 58(8):2523-2530. 107. Vandevivere, P. and P. Bavaye (1992c) Saturated Hydraulic Conductivity Reduction Cause by Aerobic Bacteria in Sand Columns. Soil. Science Society of America Journal. 56(1):1-13. 108. Vandevivere, P., P. Bavaye, D.Sanchez de Lozada, and P. DeLeo (1995) Microbial clogging of saturated soils and aquifer materials: Evaluation of mathematical models. Water Resources. Research. 31(9):2173-2180. 109. Vaz, C. M. P., M. D. F. Iossi, J. D. M. Naime, Á. Macedo, J. M. Reichert, D.J. Reinert, and M. Cooper (2005) Validation of the Arya and Paris water retention model for Brazilian soils. Soil Sci. Soc. Am. J. 69:577-583. 110. Vereecken, H., J. Maes, and J. Feyen (1990) Estimating unsaturated hydraulic conductivity from easily measured soil properties. Soil Sci. 149:1–12. 111. Whitfield, C (1988) Bacterial extracellular polysaccharides. Canadian Journal of Microbiology. (34):415-420. 112. Wo¨sten, J. H. M., A. Lilly, A. Nemes, and C. Le Bas (1999) Development and use of a database of hydraulic properties of European soils. Geoderma. 90:169–185. 113. Yoshida, I., H. Kuona, and J. Chikushi (1985) A study on the prediction of a soil moisture characteristic curve from particle-size distributions. J. Fac. Agric. Tottori Univ.20:45-54. 114. Zavattaro, L., N. Jarvis, and L. Persson (1999) Use of Similar Media Scaling to Characterize Spatial Dependence of Near-Saturated Hydraulic Conductivity. Soil Sci. Soc. Am. J. 63:486-492. 日文部分 圖書 115. 宮崎毅(2000)環境地水學,pp.96~108,東大出版會。 116. 宮崎毅(2001)微生物の增殖減衰を利用した土壤透水性制御に関する研究, pp.91~123,平成十年度~平成十二年度科學研究費補助金(機盤研究(B)(2) 展開研究)研究成果報告書。 117. 宮崎毅(2000)環境地水学,東京大学出版会。 期刊論文 118. 関勝寿,神谷準一,宮崎毅(2005)湛水浸透条件下における細菌・糸状菌による飽和透水係数の低下およびその温度依存性について,農業土木学会論文集 237,p. 13-19。 119. 宮崎毅,中野政詩, 塩沢 昌,井本博美(1991)土壤微生物が土の透水係數ぼに及す影響について,農業土木学会論文集 155,p. 69-76。 120. 關勝寿(1998)土壌微生物による土壌の透水性変化に関する研究,東京大學大學院農學生命研究科生物‧環境工學博士論文
摘要: 本研究目的為瞭解多孔介質孔隙因微生物生長而產生生物性阻塞,造成飽和水力傳導度降低之狀況。採用石英砂裝填長土柱(15cm)與短土柱(3.5cm) 進行飽和水力傳導度實驗及純水對照實驗,來瞭解Pseudomonas fluorescens與土壤複合菌種在飽和並提供充足營養源狀況下於多孔介質中生長對對飽和水力傳導度之影響。 應用濁度測定法量測出流液吸光值(OD600值),來探討Pseudomonas fluorescens與土壤複合菌種生長所造成生物性阻塞(Bioclogging)與飽和水力傳導度的關係。並以抬升水頭高度(增加水力梯度)、加入殺菌劑NaNO3(抑制菌之生長)等處理來闡明不同處理下微生物對飽和水力傳導度的影響。 實驗結果顯示在長、短土柱實驗中Pseudomonas fluorescens及土壤複合菌種都會導致飽和水力傳導度下降至只有原來純水實驗的0.1~0.01倍。在長土柱實驗中,抬升水頭高度之處理不能造成飽和水力傳導度永久性改變而加入殺菌劑則可以。 於短土柱實驗中以Pseudomonas fluorescens與土壤複合菌種不同菌種進行飽和水力傳導度實驗,實驗結果顯示單一菌種Pseudomonas fluorescens能造成飽和水力傳導度下降幅度較大,但受殺菌劑影響亦較大,也間接顯示單一物種對環境因子忍受度遠較複合物種生態環境為低。將短土柱實驗結果對照Seki長土柱實驗(12cm)入流端0~1cm與1~3cm之實驗值得知,不論在充足營養源或貧養狀況下,入流處都會發生微生物增生導致飽和水力傳導度下降的現象。 研究中亦應用Arya-Paris model粒徑分佈觀念,結合Seki and Miyazaki模式之微菌落包覆空間(The colony enveloping space)及包覆係數β(enveloping factorβ,0<β≦1)之定義,提出一具體可行的模式描述微生物生長造成多孔介質生物孔隙比α下降與飽和水力傳導度比Ks/Kso之關係。 將此模式與其他學者如Ives,Maulem,Kozeny-Carman及Seki and Miyazaki提出之模式與實測值比較,結果顯示單一粒徑狀況下,此模式可表現出生物孔隙比α與飽和水力傳導度比Ks/Kso之關係。應用於複合粒徑所組成多孔介質上,本模式以常態分佈觀念將單一粒徑0.12mm及1mm之粒徑分佈轉化成具20個粒徑分佈組成之多孔介質來進行模式驗證,結果顯示適用於不同粒徑組成多孔介質上。而模式中經驗參數a的設定相當重要,經模擬結果得知參數a在模擬0.12mm石英砂時以a=2為最佳,在模擬1mm玻璃珠時以a=0.748為最佳,模式中的參數a隨粒徑變化而改變較為適合。 藉由此模式及應用濁度測定法,即可簡單且迅速得到微生物所造成之多孔介質生物孔隙比α與飽和水力傳導度比Ks/Kso之關係,可藉此間接瞭解表土水分移動趨勢。
This study is focused on the decreasing of saturated hydraulic conductivity affected by the growth of microbes inducing bioclog in the Porous Media. Pseudomonas fluorescens, the soil microorganisms were added into the sand column with the full nutrition in different conditions as following: elevated hydraulic head(ΔH=6cm,ΔH=8cm) and added sodium azide (NaNO3, a strong biocide). Water was used as the controlled experiment. The saturated hydraulic conductivity was decreased 10-1 to 10-2 in value by the soil microorganisms and it was decreased more by Pseudomonas fluorescens. The saturated hydraulic conductivity was reduced more by adding sodium azide (NaNO3) than by elevated hydraulic head. This also shows the effect of added sodium azide in the mono microbe environment is more. A mathematical model explained the saturated hydraulic conductivity decreased by the growth of microorganisms was proposed. The model is combined with Seki and Miyazaki model's idea ‘The colony enveloping space' and ‘Enveloping factor β'(0<β≦1) and Arya-Paris model(PSD model) .To compare with other models like Vandevivere and Baveye used Ives, Maulem, Kozeny-Carman models and Seki and Miyazaki model. The model can explained the relation of biovolume ratio α and saturated hydraulic conductivity ratio Ks/Kso. According to the results, the mathematical model can be use in both of uniform porous media or/not, when the coefficient ‘a' is adequately. We can easily know the effects of microorganisms clog pores (Bioclogging) in porous media on the decrease saturated hydraulic conductivity by this model mentioned above and Turbidity Method.
URI: http://hdl.handle.net/11455/34535
其他識別: U0005-2108200715045000
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.