Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34553
標題: 應用土壤沖蝕及崩塌潛勢模式推估集水區之泥砂生產量
Estimation of Sediment Yield at Watershed Using Soil Erosion and Landslide Potential Models
作者: Chen, Chi-Tien
陳啟天
關鍵字: sediment yield of slope erosion
坡面沖蝕泥砂生產量
sediment yield of landslide
collapsed soil volume of landslide
sediment delivery ratio
坡地崩塌泥砂生產量
坡地崩塌量
遞移率
出版社: 水土保持學系所
引用: [1] 史天元、彭淼祥、吳水吉、吳麗娟(2005),農委會空載光達台灣地區測試。航測及遙測學刊,10(1):103-128。 [2] 台灣省政府農林廳水土保持局(1999),台灣西部地區山坡土壤力學性質基本資料調查報告。 [3] 田倚寧、林文賜、林昭遠(2005),泥砂產量推估之研究-以大南澳集水區為例,中華水土保持學報,37(4):363-378 [4] 朱聖心(2000),應用地理資訊系統製作地震及降雨所引致之山崩危險圖,國立臺灣大學土木工程學研究所碩士論文。 [5] 江陽聖,陳錕山,粱隆鑫,王志添(2007),以衛星影像及數值地形模型進行集水區產砂量推估,2007海峽兩岸遙測研討會。 [6] 何智武(1984),台灣河川上游集水區之泥砂來源與控制,中華水土保持學報,15(1):15-25。 [7] 吳建民(1978),台灣地區河川輸砂量之推估公式,集水區及河川之經營研討會論文集,184-198。 [8] 吳嘉俊(1994),台灣水土保持因子之初步訂定,中華水土保持學報,25(4):209-218。 [9] 李漢卿(1970),石門水庫之淤積,中華林學季刊,3(2),75-78。 [10] 李錦育(1987),林地環境因子對水土資源保育影響之研究,國立台灣大學森林所博士論文。 [11] 李振裕(2004),集水區水砂生產及輸送之整合研究,國立成功大學水利暨海洋工程學研究所碩士論文。 [12] 阮香蘭、何智武、呂建華(1992),石門水庫集水區河川系統之研究,中華水土保持學報,23(2):13-28。 [13] 周天穎、陳瓊珍(1997),德基水庫集水區土壤沖蝕量模擬之研究,中華水土保持學報,28(4):321-332。 [14] 周天穎、雷祖強、陳駿賢(2003)「遙測及景觀分析技術於崩塌地判釋與變遷之研究」,中華水土保持學報, 34(4): 353-368。 [15] 林文賜(2002),集水區空間資訊萃取及坡面泥砂產量推估之研究,國立中興大學水土保持研究所博士論文。 [16] 林佳鋒(2001),森林集水區泥砂沖蝕來源之研究,國立台灣大學森林學研究所碩士學位論文。 [17] 林俊輝(1984),國姓水庫集水區泥砂生產量推估之研究,國立中興大學水土保持研究所碩士論文。 [18] 林俐玲(1995),覆蓋因子(C值)之評定,中美陡坡土壤流失量推估技術研討會論文集,109-116。 [19] 林俐玲、林文英(1997),水蝕推估模式WEPP之評估與驗證,中華水土保持學報,28(2):145-156。 [20] 林俐玲、胡自健(1998),茶園不同水土保持處理下土壤流失量之評估,中華水土保持學報,29(3):249-260。 [21] 林俐玲、祝瑞敏(1992),結合農業非點源污染模式(AGNPS)與地理資訊系統(GIS)做為集水區評估工具之探討,中華水土保持學報,24(2):11-34。 [22] 林昭遠、林文賜(1999),集水區坡長因子自動萃取之研究,中華水土保持學報,30(4):313-320。 [23] 林朝宗、林慶偉、李森淵、謝正倫、黃健政(2005),颱風豪雨期間石門水庫庫水濁度遽升之懸浮顆粒來源探討,2005 水庫集水區永續經營研討會。 [24] 林雍富(2001),應用BASINS模式於非點源污染傳輸之模擬-以霧社水庫為例,國立臺灣大學土木工程學研究所碩士學位論文。 [25] 邱昱嘉(2003),應用HSPF 模式與銫-137 技術於集水區產砂量推估之研究,國立台灣大學土木工程學研究所碩士論文。 [26] 范正成(1993),台灣地區土壤沖蝕預測公式之回顧、研究與展望,中華水土保持學報,24(2):131-152。 [27] 唐政洪、蔡强國(2002),侵蝕產砂模型研究進展和GIS應用,泥沙研究,2002(5),59-66。 [28] 康恬慎( 2001) 石門水庫集水區不同時期崩塌地調查結果分析, 國立台灣大學森林學研究所碩士論文。 [29] 張石角(1995),台灣東部之環境地質分區與崩塌類型, 工程環境會刊, 14:59-85。 [30] 陳本康(2004),石門水庫集水區崩塌特性及潛勢評估研究,國立中興大學水土保持學系博士論文。 [31] 陳威誠、史天元(2004),由光達覆蓋模型萃取數值高程模型之研究,第二十三屆測量學術及應用研討會,301-310。 [32] 陳萓蓉、夏禹九(2000),農業非點源污染模式應用於河川保護帶配置上之探討,中華水土保持學報,31(1):1-12。 [33] 陳意璇(2001)溪頭地區山崩潛感圖製作研究,國立臺灣大學土木工程學研究所,碩士論文。 [34] 陳樹群、林培雯(2000),防砂壩對白河水庫集水區整治率之推估研究,中華水土保持學報,31(1):49-57。 [35] 陳樹群、賴益成(1999),河川與集水區泥砂遞移率之推估研究,中華水土保持學報,30(1):47-57 。 [36] 陳樹群、賴益成(2004),水庫集水區土砂評量與整治率評估模式,中華水土保持學報,35(1):53-67。 [37] 陳樹群、賴益成、謝政道(2002),水庫集水區治理成效評估研究,中華水土保持學報,33(3):201-214。 [38] 陳樹群、簡如宏、馮智偉、巫仲明(1998 ),本土化土壤沖蝕指標模式之建立,中華水土保持學報,29(3):233-247。 [39] 游繁結、周天穎、葉昭憲、林文賜(2002),地理資訊系統於集水區防砂整治率估算之應用,中華水土保持學報,33(1):1-9。 [40] 黃宏斌、廖翊鈞(1991),崩坍對河道沖淤之影響研究,中華水土保持學報,22(1):69-83。 [41] 黃俊德(1979)台灣降雨沖蝕指數之研究,中華水土保持學報,10(1):127-144。 [42] 楊文仁、范正成(2003),運用類神經網路建立紋溝間土壤沖蝕推估模式之研究(2003),中華水土保持學報,34(3):271-279 [43] 萬鑫森、黃俊義(1989),台灣坡地土壤沖蝕,中華水土保持學報,20(2):17-45。 [44] 經濟部水利署水利規劃試驗所(2005),大甲溪流域聯合整體治理規劃檢討報告。 [45] 經濟部水利署水利規劃試驗所(2005),水庫集水區崩塌地潛勢分析及崩塌土方量估算之研究(2/3)。 [46] 經濟部水利署北區水資源局(2006),石門水庫集水區航照判釋及地理資訊查詢系統建置報告。 [47] 趙倬群(2004),石門水庫集水區崩塌土砂產量推估之研究,國立台灣大學土木工程學研究所碩士論文。 [48] 劉進金(2005),空載光達技術之發展現況空載光達技術之發展現況,「國內高解析空載及衛載遙測之現況及未來」研討會,2004年10月8,行政院農業委員會及國立中央大學太空及遙測研究中心共同主辦。 [49] 歐陽元淳(2002),水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例,國立台灣大學地理環境資源學研究所碩士論文。 [50] 蔡宗賢(2005),水庫集水區暴雨時期崩塌土砂量推估之研究,國立台灣大學土木工程學研究所碩士論文。 [51] 蔡長泰(1992),石門水庫集水區産砂量分析,集水區産砂量與輸砂問題研討會論文集,5-1至5-37。 [52] 鄭永青(1997),不同土地利用型態對土壤沖蝕之影響及最適化分析-以水里溪集水區為例,國立東華大學自然資源管理研究所碩士論文。 [53] 鄭皆達、謝在郎(1997),石門水庫集水區泥沙生產與水文特性之關係28(1):1-9。 [54] 鄭傑銘(2002),應用GIS進行豪雨及地震引致山崩之潛感性分析,國立臺灣大學土木工程學研究所碩士論文。 [55] 盧光輝(1989),應用程序模型推估台灣土壤可蝕性,中華水土保持學報,20(1):31-38。 [56] 盧光輝(1996)土壤沖蝕模式之建立,收入姜善鑫、湯曉虞、吳輝龍、陳禮仁主編85年度水土保持及集水區經營研究計畫成果彙編,1-19。 [57] 盧光輝(1999),降雨沖蝕指數之修訂,中華水土保持學報,30(2):87-94。 [58] 盧光輝、姜善鑫(1990),農業非點源污染模式在大湖小農業集水區之應用,中華水土保持學報,21(2):62-72。 [59] 盧光輝、范正成、林俐玲、黃俊德、吳嘉俊( 1995) 土壤沖蝕研 究發展技術之改進( 二),收入姜善鑫、湯曉虞、吳輝龍、陳 禮仁主編84 年度水土保持及集水區經營研究計畫成果彙編,41-52。 [60] 蕭國鑫、尹承遠、劉進金、游明芳、王晉倫(2003),SPOT影像與航照資料應用於崩塌地辨識之探討,航測及遙測學刊,8(4):29-42。 [61] 賴益成(1998),集水區泥砂遞移率之推估研究,中興大學水土保持學系碩士論文。 [62] 謝兆申、王明果(1991),台灣地區主要土類圖輯,國立中興大學土壤調查試驗中心,台中市,343。 [63] 謝佳玲(1999),不同土壤沖蝕模式推估土壤流失量之比較,國立中興大學水土保持學系研究所碩士論文。 [64] Lim ,Kyoung Jaea, Myung Sagong, Bernard A. Engel , Zhenxu Tang , Joongdae Choi and Ki-Sung Kim(2005),GIS-based sediment assessment tool,Catena,Vol. 64(2005),pp. 61–80 [65] Bathurst, J. C., A. Burton, and T. J. Ward (1997),Debris Flow Run-out and Landslide Sediment Delivery Model Tests, Journal of Hydraulic Engineering, ASCE, Vol. 123, No. 5, pp. 410-417. [66] Dietrich ,W. E. and D. R. Montgomery(1994),”A Physically Based Model for The Topographic Control on Shallow Landsliding,”Water Resources Research,30(4):1153-1171. [67] Dietrich ,W. E. and D. R. Montgomery(1998),A Digital Terrain Model for Mapping Shallow Landslide Potential ,http://socrates.berkeley.edu/~geomorph/shalstab/ [68] Dietrich, W. E., Reiss, R., Hsu, M.-L., and Montgomery, D. R.(1995), A Process-Based Model for Colluvial Soil Depth andShallow Landsliding using digital elevation data, Hydrological Processes, Vol. 9, pp. 383-400. [69] Dietrich, W.E. et al. (1998), A validation study of the shallow slope stability model, SHALSTAB, in forested lands of Northern California. Stillwater Ecosystem, Watershed & Riverine Sciences. Berkeley, CA. 59 pp. [70] Dymond, J.R., Jessen, M.R. and Lovell, L.R. (1999),Computer simulation of shallow landsliding in New Zealand hill country, JAG,1(2): 122-131. [71] Foster, G. R, and W. H Wischmeier (1974),"Evaluating Irregular Slopes for Soil Loss Prediction," American Society of Agricul-tural Engineers, Transactions, Vol. 17, pp. 305-309. [72] Foster, G. R. (1982), "Modeling the Erosion Process," Chapter 8, "Hydrologic Modeling of Small Watersheds," Edited by Harm, C.T., Johnson, H.P., and Brakensick, D.L., ASAR Monograph Number 5, American Society of Agricultural Engineers, St Joseph, Michiaan, pp. 297-380. [73] Geogory, K. L. and Walling, D. E. (1973), Drainage Basin Form and Processes: A Geomorphological Approach, London: Edward Arnold Ltd. [74] IAEG Commission on Landslide.(1990),Suggest Nomenclature for Landslides.Bulletin of the International Association of Engineering Geology,No.41,pp.13-16. [75] Khazai, B., and Sitar, N.( 2000), Assessment of Seismic Slope Stability Using GIS Modeling. Geographic Information Sciences, 6(2):121-128. [76] Lin Min-Lang, Fushu, Jeng (2004), Identification of areas prone to Rain-Induced Landslides of Shi-To Area in central Taiwan, Proceeding of International Symposium on Landslide and Debris Flow Hazard Assessment, 2004 Oct 7~8. [77] Meyer, L. D. (1981), "How Rain Intensity Affects Interrill Erosion," Transactions of the ASAE, 24(6): 1472-1475. [78] Nicoletti , P. G., and Sorriso-Valvo.(1991),Geomorphic Controls of the Shape and Mobility of Rock Avalanches. Bulletin of the Geological Society of America,Vol.103,No.10,pp.1365-1373 [79] Peter Schuerch, Alexander L. Densmore, Brian W. McArdell, Peter Molnar, (2006), The influence of landsliding on Sediment supply and channel change in a steep mountain catchment. Geomorphology, Geomor-01895. [80] Renard, K.G., G.R. Foster, G.A. Weesies, D.K. McCool, and D.C. Yoder( 1997), Predicting Soil Erosion by Water: A Guide to Conservation Planning With the Revised Universal Soil Loss Equation (RUSLE), Agricultural Handbook, 703. U.S. Government Printing Office, Washington, D.C. pp.404 . [81] Shaw S.C. and Vaugeois L. M. (1999). Comparison of GIS-based models of shallow landsliding for application to watershed management. TFW report PR10-99-001. Washington Department of Natural Resources. Olympia, WA 110 pp. [82] Shia, Z.H., C.F. Caia, S.W. Dinga, T.W. Wanga, T.L. Chow (2004),Soil conservation planning at the small watershed level using RUSLE with GIS: a case study in the Three Gorge Area of China,Catena (55), pp.33–48 [83] Shirazi, and Boersma (1984),” A unifying quantitative analysis of soil texture .” Soil SCl. AM.J., Vol. 48, pp. 142-147. [84] USDA. (1989), Water Erosion Prediction Project: Hillslope Model Documentation, USDA-ARS,NSERL, Report No.2, L. J. Lane, and M. A. Nearing (eds.) . USDA-ARS, West Lafayette, Indiana. [85] Watson, D.A. and J.M. Laflen (1986), "Soil Strength, Slope, and Rainfall Intensity Effects on Interrill Erosion," Transactions of the ASAE, 29(1): 98-102 [86] Wicks. , and Bathurst. (1996), SHESED:a physical based , distribute erosion and Sediment yield component for the SHE hydrological modeling system. Journal of Hydrology ,175 ,pp.213 - 238. [87] Wischmeier, W.H. and D.D, Smith (1958),"Rainfall Energy and Its Relationship to Soil Loss," American Geophysical Union, Transactions, Vol. 39, pp. 285-291. [88] Wischmeier, W.H. and D.D. Smith (1965),"Predicting Rainfall-erosion Losses from Cropland East of the Rocky Mountains," Agricultural Handbook 282, Agricultural Research Service, United States Departmeat of Agriculture. [89] Wischmeier, W.H, and D.D. Smith (1978),"Predicting rainfall erosion losses," Agricultural Handbook 537, Agricultural Research Service, United States Department of Agriculture. [90] Wischmeier, W.H.(1976), Use and misuse of the universal soil loss equation, Journal of Soil and Water Conservation. 31(1): 5-9. [91] Wischmeier, W.H., and Smith, D.D.(1965), Predicting rainfall-erosion losses from cropland east of the Rocky Mountains: U.S. Department of Agricultural Handbook 282: Washington, D.C., U.S. Government Printing Office, 47 pp. [92] Wischmeier, W.H., C. B. Johnson, and B.V.Cross (1971),”A Soil Erodibility Nomograph for Farmland and Construction Sites,”Journal of Soil and Water Conservation,Vol.26, pp. 189-193. [93] 打荻珠男(1971),「ひと雨による山腹崩壞について」,新砂防(79):21-34。
摘要: 本研究應用土壤沖蝕及崩塌潛勢模式推估石門水庫集水區之泥砂生產量。坡面沖蝕泥砂生產量可採用IDRISI程式-RUSLE模組(IR模組)及IDRISI程式-SEDIMENTATION(IS模組)兩模組進行計算求得。而坡地崩塌泥砂生產量,則先以IAEG(1990)建議之方法並配合崩塌土方膨脹折減因子33%來計算坡地崩塌量後,隨之,再考量坡地崩塌量崩塌土砂運移率及河道泥砂遞移率,即可求得坡地崩塌泥砂生產量。另外,在IAEG(1990)方法中所採用之臨界崩塌深度,乃先應用SHALSTAB崩塌潛勢分析程式來反算集水區坡地崩塌時之相當土壤材料參數,如土壤摩擦角、土壤密度、土壤凝聚力、土層厚度後,再配合Dymond et al. (1999)之無限邊坡臨界狀態關係式來求得。 在IR及IS模組之坡面沖蝕泥砂生產量中,一區塊之淨沖蝕量或淨堆積量,可由周圍鄰近區塊計算之淨沖蝕或淨堆積之累積貢獻推得,此計算方式較符合集水區之實際沖蝕狀況。再者,由分析成果得知坡面沖蝕泥砂生產量較坡地崩塌泥砂生產量高,此結果有別於過去研究。主要原因為IR模組運算時所採用之C值(覆蓋與管理因子)乃由颱風後之土地利用資料換算而得,資料中涵蓋了颱風期間所引發大量之崩塌裸露區域,此崩塌裸露區域之影響將大幅反應於C值中。此效應可由坡面淨沖蝕量較高之區位均落在崩塌裸露區而得到驗證。 再者,採用IAEG(1990)方法所計算之坡地崩塌量,其量體與過去研究之坡地崩塌量比較,相對偏低。其主要原因除了在計算過程中採用了崩塌土方膨脹折減因子33%來降低膨脹疏鬆崩塌土砂之體積外,所採用之理論臨界崩塌深度亦相對偏低。 最後,由研究結果可知,在坡地崩塌量中實際遞移至石門水庫庫區之坡地崩塌泥砂生產量約佔35% ,可推估另有65 %之坡地崩塌量尚堆積在坡地下坡處及河道邊緣區域。因此,集水區泥砂生產量很難以單一颱風或豪雨事件之沖蝕與崩塌量來計算,應同時考量過去事件中未被運移之堆積土砂可能造成的影響。
This study attempts to estimate the sediment yield of Shi-Men Reservoir watershed through the applications of soil erosion model and landslide susceptibility potential models. The sediment yield of slope erosion can be calculated by the two modules in IDRISI program: namely, the IDRISI-RUSLE module (or IR module) and the IDRISI-SEDIMENTATION (or IS module). Regarding the determination of sediment yield of landslide, it is suggested to perform by the following processes. Firstly, incorporating the swell reduction factor 33% with the method proposed by IAEG (International Association of Engineering Geology, 1999) to calculate the collapsed soil volume of landslide. Subsequently, taking the Sediment Transportation Ratio (STR) of slope land and the Sediment Delivery Ratio (SDR) of flow channel into account, the sediment yield of landslide can be determined. Moreover, prior to determining the critical depth of landslide adopted in the method of IAEG (1990), it is necessary to back-analyze the soil material parameters such as cohesion, friction angle, density and the thickness of colluvium using Landslide Susceptibility Potential Analyzing Program SHALSTAB at first. Subsequently, the critical depth of landslide can be calculated by the critical state equation of an infinite slope proposed by Dymond et al. (1999). The sediment yield of slope erosion can be calculated by IR and IS modules in IDRISI program. Among the calculation, the net erosion or net deposition of a patch is calculated according to the accumulative contribution of those from the adjacent surrounding patches and such calculation scheme is more coincident with the actual erosion mode of watershed. In addition, the calculations indicate the sediment yield of slope erosion is higher than that of landslide and this is deviated from most of previous studies. The main cause to result in such situation can be attributed to the C value (cover-management factor) adopted in the calculation of IR module was determined by the data bank of land use after Typhoon event. As a consequence, numerous landslides triggered by rainfall during Typhoon are encompassed in the data bank of land use and alternately reflect the influence upon the C value. Further this effect can be verified by the fact that most of patches with higher net erosion fall in the landslide area. Furthermore, the collapsed soil volume of landslide determined by the method of IAGE (1990) was underestimated when compared with those from the previous studies. This is caused by the adoption of swelling reduction factor 33% and the smaller critical depth of landslide in the calculations. The swelling reduction factor is used to reduce the volume of collapsed soil during landslide which swells due to the release of confining stress. Eventually, the study indicates merely 35% of the collapsed soil volume of landslide is delivered to the Shi-Men Reservoir and become the sediment yield of landslide. Alternately, there approximates 65% of the collapsed soil volume remains near the down slope and the brink of flow channel. Accordingly, it is arduous to calculate the sediment yield of watershed simply count on a single typhoon or torrential event and it is suggested to take the possible influence of the remaining sediment at the last event into account in calculation.
URI: http://hdl.handle.net/11455/34553
其他識別: U0005-2401200814014300
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.