Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34637
標題: 應用AnnAGNPS模式推估集水區逕流量及泥砂產量之研究
Watershed runoff and sediment yield assessment using AnnAGNPS model
作者: Yen, Ya-Yu
嚴雅郁
關鍵字: AnnAGNPS
年農業非點源污染模
Runoff
Sediment yield
地表逕流
泥砂產量
出版社: 水土保持學系所
引用: 1. 吳嘉俊 等(1996),「土壤流失量估算手冊」,行政院農業委員會。 2. 吳藝昀(2003),「台灣天然雨滴粒徑分佈及年等降雨沖蝕指數圖之修訂」,國立中興大學土木工程學系碩士論文,pp. 83。 3. 林俐玲、胡自建(1996),「修正版通用土壤流失公式(RUSLE)」,中華水土保持學報,28(2):83-99。 4. 胡毓解(2004),「農業非點源污染模式之應用—以萬安溪集水區為例」,國立屏東科技大學水土保持系碩士論文,pp. 74-76。 5. 夏禹九、陳萓蓉(2000),「農業非點源汙染模式應用於河川保護帶配置之探討」,中華水土保持學報,31(1):1-12。 6. 郭振泰 等(1997),「水庫集水區非點源污染控制手冊及分級分區管理措施之研訂」,經濟部水資源局委託,國立台灣大學土木工程研究所執行。 7. 許桓碩(2007),「AnnAGNPS模式推估集水區逕流量與泥砂產量之適用性探討」,國立中興大學水土保持學系碩士論文,pp. 6-14。 8. 黃金良 等(2005),「AnnAGNPS模型在九龍江典型小流域的適用性檢驗」,環境科學學報,25(8):1135-1142。 9. 程炯 等(2007),「珠江三角洲典型流域AnnAGNPS模型模擬研究」,農業環境科學學報,26(3):842-846。 10.鄒桂紅、崔建勇(2007),「基於AnnAGNPS模型的農業非點源污染模擬」,農業工程學報,23(12):11-17。 11.賈寧鳳 等(2006),「基於AnnAGNPS模型的黃土高原小流域土壤侵蝕定量評價」,農業工程學報,22(12):23-27。 12.萬鑫森、黃俊義(1989),「台灣坡地土壤沖蝕」,中華水土保持學報,20(1):17-45。 13.謝漢欽、鄭祁全(1995),「福山地區SPOT多期影像植生綠度分析」,林業試驗所研究季刊,10(1):105-120。 14.Aitken, A.P.(1973), Assessing systematic errors in rainfall-runoff models. Journal of Hydrology, 20(2):121-136. 15.ARC/INFO(1992), Understanding GIS Environmental Systems Research Institution Inc. 16.Bhuyan, S.J., J.K. Koelliker, L.J. Marzen and J.A. Harrington(2003), An integrated approach for water quality assessment of a Kansas watershed. Environmental Modelling and Software, 18(5):473-484. 17.Grunwald, S. and L.D. Norton(2000), Calibration and validation of a non-point source pollution model. Agricultural Water Management, 45(1):17-39. 18.He, C., C. Shi, C. Yang and B.P. Agosti(2001), A windows-based GIS–AGNPS interface. Journal of The American Water Resources Association, 37(2):395-406. 19.James, L.D. and S.J. Burgess(1982)Selection calibration, and testing of hydrologic models. In:Hann, C.T., Johnson, H.P., Brakensiek, D.L. (Eds), Hydrologic Modelling of Small Watershed. ASAE, St, Joseph, MI. 20.Jennifer, B.S., B. David, E.L. Usery, V. George, R.C. Lowrance and J.M. Sheridan(2001), Use of the AnnAGNPS model for a watershed in the coastal plain of Georgia. 9th National Nonpoint Source Monitoring Workshop, pp. 27-30. 21.Jenson, S.K. and J. O. Domingue(1988), Extracting Topographic Structure form Digital Elevation Data for Geographic Information Analysis. Photogrammetric Engineering and Remote Sensing, 54(11):1593-1600. 22.Leblon, B., L. Gallanr, F. Bonn and A. Peasant(1996), Corn residue assessment from optical and thermal infrared ground-based measurement. Canadian Journal of Remote Sensing, 22(2):198-207. 23.Legates, D.R. and G.J. McCabe(1999) Evaluating the use of “goodness- of-fit” measures in hydrologic and hydroclimatic model validation. Water Resources Research, 35(1):233-241. 24.Lenzi, M.A. and M.D. Luzio(1997), Surface runoff, soil erosion and water quality modeling in the Alpine watershed using AGNPS integrated with a Geographic Information System. European Journal of Agronomy, 6(1):1-14. 25.Liao, H.H. and U.S. Tim(1997), An interactive modeling environment for nonpoint source pollution control. Journal of the American Water Resources Association, 33(3):1-13. 26.Lin, C.Y., W.T. Kun and W.C. Chou(2002), Soil erosion prediction and sediment yield estimation the Taiwan experience. Soil and Tillage Research, 68(2):143-152. 27.Nash, J.E. and J.V. Sutcliffe. (1970) River flow forecasting through conceptual models. Part 1. A discussion of principles. Journal of Hydrology, 10(3):282-290. 28.Ndiritu, J.G. and T.M. Daniell(1997), An improved genetic algorithm for rainfall-runoff model calibration and function optimization. In: Proceedings of the International Congress on Modelling and Simulation MODSIM’97, Volume 4, pp. 1683-1688. 29.Panuska, J.C., I.D. Moore and L.A. Kramer(1991), Terrain analysis:Integration into the agricultural nonpoint source (AGNPS) pollution model. Journal of Soil and Water Conservation, 46(1):59-64. 30.Parsons, J.E., D.L. Thomas, and R.L. Huffman (editors)(2001), Agricultural Non-point Source Water Quality Models: Their Use and Application, Southern Coop. Ser. Bul. No.398. 31.Pekarova, P., A. Konicek and P. Miklanek(1999), Testing of AGNPS model application in Slovak microbasins. Phys. Chem. Earth (B), 24(4):303-305. 32.Polyakov, V., A. Fares, D. Kubo, J. Jacobi and C. Smith(2007), Evaluation of a non-point source pollution model, AnnAGNPS, in a tropical watershed. Environmental Modelling and Software, 22(11):1617-1627. 33.Rawls, W.J., D.L. Brakensiek and K.E. Saxton(1982), Estimation of soil water properties. Tran. ASAE, 25(5):1316-1320. 34.Renard, K.G., G.R. Foster, G.A. Weesies, D.K. McCool and D.C. Yoder(1996), Predicting soil erosion by water:A guide to conservation planning with the Revised Universal Soil Loss Equation(RUSLE). USDA, Agriculture Handbook Number 703. 35.Ronald, L.B. and F.D. Theurer(2005), AnnAGNPS Technical Processes. USDA-ARS, National Sedimentation Laboratory. 36.SCS.(1986), Technical Release 55:Urban hydrology for small watersheds. Soil Conservation Service, USDA. 37.Shrestha, S., M.S. Babel, A.D. Gupta and F. Kazama(2006), Evaluation of annualized agricultural nonpoint source model for a watershed in the Siwalik Hills of Nepal. Environmental Modelling and Software, 21(7):961-975. 38.Srinivasan, R. and B.A. Engel(1994), A spatial decision support system for assessing agricultural non-point source pollution. Water Resource Bulletin, 30(3):441-452. 39.U.S. Department of Agriculture, Soil Conservation Service(USDA-SCS)(1984), User’s guide for the CREAMS computer model—Washington Computer Center version. Washington, D.C. USDA-SCS TR-72. 網路資料 1. http://gweb.wra.gov.tw/wrweb/WaterResource.htm
摘要: 本研究利用年農業非點源污染模式(AnnAGNPS),進行北勢溪集水區逕流量及泥砂產量推估,再由實測值與模擬值的比較評估其適用性。以1997年及1998年間之實測資料對模式內各參數進行校準,再以2002、2004及2005年間實測資料對模式之推估值進行驗證,並以效率係數(CE)及估計差異(ED)評估模式適用性。 模式推估各驗證年之逕流量,其CE值依序為0.36、-1.82及-0.85;ED值為52.54%、23.42%及39.65%。CE值顯示月份間實測值與推估值相關性差,ED值更顯現年總量誤差低估達52.54%,主要係因模式未考慮地下水層流動情形所致。若將日雨量為零的實測流量值當成基流量予以扣除,則CE值分別為0.81、-1.79及-0.30;ED值為21.83%、22.91%及17.74%。CE值有明顯的提升,ED值更是下降至23%以內,顯示地表下逕流明顯影響模式推估之效能。泥砂產量之實測值係由流量推算而得,利用扣除基流量之實測流量換算,泥砂產量推估結果,CE值分別為0.90、0.39及0.51;ED值為37.09%、12.26%及35.84%。推估值在月份間與實測值有良好的趨勢性,而年總量誤差在40%以內。 由於模式未考慮集水區水源涵養能力,降雨與逕流間易產生遲滯現象,模式推估與實測值之誤差主要可歸納為雨型誤差、退水歷線誤差及基流誤差三種。模式僅以短期間資料校正,更突顯出模式未計算基流量的差異,導致無法準確推估集水區逕流量及泥砂產量,若能進一步分析集水區基流及水文遲滯現象帶來的影響,將有助於模擬精度之提升。
AnnAGNPS model was used to simulate runoff and sediment yields in the Pei-shih river watershed, and the suitability of the model was examined in this study. The observed runoff and sediment yield for the year 1997 and 1998 at the watershed outlet are collected to calibrate values of parameters of the model. Records suitability of the year 2002, 2004 and 2005 were taken to verify the model by coefficient efficiency(CE)and estimation difference(ED). Performance of the model for the verify years is 0.36, -1.82 and -0.85 in CE, and is 52.54%, 23.42% and 39.65% in ED under the simulation of runoff estimation. CE values showed that monthly runoff estimation had an insignificant relationship between measured and simulated. ED values indicated that the absolute error for the annual runoff estimation is 52.54%. Due to the model ignores the status of subsurface runoff; the daily measured discharge can be neglected as the daily precipitation is zero. Both of CE and ED are well improvement, and the value will be 0.81, -1.79, -0.30, and 21.83%, 22.91%, 17.74% respectively. It means that subsurface runoff can obviously affect the efficiency of simulation. Measured sedimentation derived from daily discharge (zero daily precipitation deducted), the simulation of annual sediment yield in CE is 0.90, 0.39, 0.51, and is 37.09%, 12.26%, 35.84% in ED. There is a good relationship between measured and simulated data, and the error percentage of annual estimation for the sediment yield is less than 40%. The errors encountered in the model can be categorized as precipitation pattern, hysteresis effect, and base flow due to less consideration of subsurface runoff in the watershed. Calibrating the model with short term data can amplify base flow induced errors, how to analyze the effects of hydrologic hysteresis and base flow can effectively help promote the accuracy of simulation.
URI: http://hdl.handle.net/11455/34637
其他識別: U0005-0608200818483600
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.