Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34642
DC FieldValueLanguage
dc.contributor盧光輝zh_TW
dc.contributorKwong-Fai Loen_US
dc.contributor曹舜評zh_TW
dc.contributorShun-Ping Tsaoen_US
dc.contributor.advisorLi-Ling Linen_US
dc.contributor.advisor林俐玲zh_TW
dc.contributor.authorLin, Chia-Yenen_US
dc.contributor.author林佳燕zh_TW
dc.contributor.other中興大學zh_TW
dc.date2009zh_TW
dc.date.accessioned2014-06-06T07:48:05Z-
dc.date.available2014-06-06T07:48:05Z-
dc.identifierU0005-0707200813274600zh_TW
dc.identifier.citation中文部分 圖書 1.周毅、洪明瑞共譯(1995),大地工程原理第三版,高立圖書有限公司。 2.林俐玲、董小萍(1996),土壤物理學實習手冊,國立中興大學水土保持學系。 3.萬鑫森譯(1987),基礎土壤物理學,國立編譯館主編,茂昌圖書有限公司發行。 期刊論文 1.陳信宏(2006),以Arya and Paris Model 推估土壤水分特性之研究,國立中興大學水土保持學系研究所碩士論文。 2.張舒婷(2007),土壤水分特性曲線與不飽和水力傳導度之研究,國立中興大學水土保持學系研究所碩士論文。 西文部分 Books 1.American Society for Testing and Materials. (1985d). Standard test method for particle-size analysis of soils. D 422-63(1972). 1985 Annual Book of ASTM Standards 04.08:117-127. American Society for Testing and Materials, Philadelphia. 2.Gee, G. W. and, J. W. Bauber (1986), Particle-size analysis, P. 383-411. In A. Klute(ed.) Methods of soil analysis. Part1: Physical and Mineralogical methods. 2nd ed. Agronomy Monograph no.9.ASA and SSSA, Madison, WI, USA. 3.Gee, G.W., and D. Or. (2002). Particle-size analysis. p.255–293. In J.H. Dane and G. C. Topp (ed.) Methods of soil analysis. Part 4. SSSA Book Series No. 5. SSSA, Madison, WI. 二、Journal Articles 1.Arya, L. M., and J. F. Paris (1981), A physico-empirical model to predict soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 45:1023-1030. 2.Arya, L.M., and J. C. Richter, and S. A. Davidson (1982), A comparison of soil moisture characteristic predicted by the Arya-Paris model with laboratory-measured data. AgRISTARS Tech. Rep. SM-L1-04247, JSC-17820. NASA-Johnson Space Center, Houston, TX. 3.Arya, L.M., F. J. Leij, M. Th. Van Genuchten, and P. J. Shouse (1999a), Scaling parameter to predict the soil water characteristic from particle-size distribution data. Soil Sci. Soc. Am. J. 63:510-519. 4.Arya, L. M., F. J. Leij, P. J. Shouse, and M. Th. van Genuchten (1999b), Relationship between the hydraulic conductivity function and the particle-size distribution. Soil Sci. Soc. Am. J. 63:1063-1070. 5.Bouma, J. (1989), Using soil survey data for quantitative land evaluation. Adv. Soil Sci. 9:177-213. 6.Basile, A., and G. D’Urso (1997), Experimental corrections of simplified methods for predicting water retention curves in clay-loamy soils from particle-size determination. Soil Technology 10:261-272. 7.Bittelli, M., G.S. Campbell, and M. Flury (1999), Characterization ofparticle-size distribution in soils with a fragmentation model. Soil Sci. Soc. Am. J. 63:782–788. 8.Buczko, U., and H. H. Gerke (2005), Evaluation of the Arya and Paris Model for estimating water retention characteristics of lignitic mine soils. Soil Sci. 142:483-494. 9.Comegna, V., P. Damiani, and A. Sommella (1998), Use of a fractal model for determining soil water retention curves. Geoderma 85:307-323. 10.Cornelis, W. M., J. Ronsyn, M. Van Meirvenne, and R. Hartmann (2001), Evaluation of pedotransfer functions for predicting the soil moisture retention curve. Soil Sci. Soc. Am. J. 65:638-648. 11.Chan, T. P., and R. S. Govindaraju (2004), Estimating soil water retention curve from particle-size distribution data based on polydisperse sphere systems. Vadose Zone Journal 3:1443-1454. 12.Eshel, G., G.J. Levy, U. Mingelgrin, and M. J. Singer (2004), Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci. Soc. Am. J. 68:736-743. 13.Gupta, S. C., and R. P. Ewing (1992), Modeling water retetion characteristics and surface roughness of tilled soils. P379-388. In: van Genuchten et al.(ed.) Proc. Int. Workshop on Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils. U. S. Salinity Laboratory, Riverside, CA. 14.Haverkamp, R., and J. Y. Parlange (1986), Predicting the water-retention curve from particle-size distribution: 1. Sandy soils without organic matter. Soil Sci. 142:325–339. 15.Hwang, S. I, K. P. Lee, D. S. Lee, and S. E. Powers (2002), Models for estimating soil particle-size distributions. Soil Sci. Soc. Am. J. 66:1143-1150. 16.Hwang, S. I. and S. E. Powers (2003), Using Particle-size Distribution Models to Estimate Soil Hydraulic Properties. Soil Sci. Soc. Am. J. 67:1103-1112. 17.Jonasson, S.A. (1992), Estimation of van Genuchten parameters from grain-size distribution. p. 443–451. In M.Th. van Genuchten et al. (ed.) Proc. Int. Workshop on Indirect Methods of estimating the Hydraulic Properties of Unsaturated Soils. Univ. of California, Riverside. 11-13 Oct. 1989. U.S. Salinity Lab. And Dep. Soil and Envir. Sci., Riverside, CA. 18.Jones, S. B., and D. Or. (1998), Design of porous media for optimal gas and liquid fluxes to plant roots. Soil Sci. Soc. Am. J. 62:563-573. 19.Keller, J. M. and G. W. Gee (2006), Comparison of American society of testing materials and soil science society of America hydrometer methods for particle-size analysis. Soil Sci. Soc. Am. J. 70:1094-1100. 20.Lascano, R. J. and L. Stroosnijder (1993), A simple method for predicting the spatial distribution of soil hydraulic properties. Soil Sci. Soc. Am. J. 57:1479-1484. 21.Mishra, S., J.C. Parker, and N. Singhal (1989), Estimation of soil hydraulic properties and their uncertainty from particle-size distributiondata. J. Hydrol. (Amsterdam) 108:1–18. 22.McBratney, A. B., B. Minasny, S. R. Cattle, and R. W. Vervoort (2002), From pedotransfer functions to soil inference systems. Geoderma 109:41-73. 23.Pachepsky, Y. A. and W.J. Rawls (1999), Accuracy and reliability of pedotransfer functions as affected by grouping soils. Soil Sci. Soc. Am. J. 63:1748–1757. 24.Rousseva, S.S. (1997), Data transformations between soil texture schemes. Eur. J. Soil Sci. 48:749–758. 25.Schuh, W.M., R.L. Cline, and M.D. Sweeney (1988), Comparison of a laboratory procedure and a textural model for predicting in situ soil water retention. Soil Sci. Soc. Am. J. 52:1218–1227. 26.van Genuchten, M. Th. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J.44:892-898. 27.Vaz, C. M. P., M. D. F. Iossi, J. D. M. Naime, A. Macedo, J. M. Reichert, D. J. Reinert, and M. Cooper (2005), Validation of the Arya and Paris water retention model for Brazilian soils. Soil Sci. Soc. Am. J. 69:577-583. 28.Wu, L., J.A. Vomocil, and S.W. Childs (1990), Pore size, particle size, aggregate size, and water retention. Soil Sci. Soc. Am. J. 54:952–956. 29.Wösten, J. H. M., Y. A. Pachepsky, and W. J. Rawls (2001), Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology 251:123-150. 30.Zhuang, J., Y. Jin, and T. Miyazaki. 2001. Estimating water retention characteristic from soil particle-size distribution using a non-similar media concept. Soil Sci. 166:308–321.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/34642-
dc.description.abstract現今有學者提出以間接的方法,來模擬並推估土壤的水分特性,這些方法一般統稱為「土壤轉換函數(PTFs)」。本研究所使用的Arya and Paris Model即是 PTFs的其中一種模式。此模式主要是以土壤的粒徑分佈、總體密度及顆粒密度,三者來推估土壤水分特性,並且為一般預測土壤水分特性方法中較被接受的模式,因此選擇此模式作為研究的方法。 針對Arya and Paris模式使用上所需之土壤粒徑分佈資料來作試驗,經由模式之計算,即可推估出土壤水分含量及張力勢能,將所得的推估值與直接量測之實驗結果作對照以驗證模式的信賴度。並探討在不同土壤質地下Arya and Paris模式之適用參數α。 研究結果顯示,利用Arya and Paris模式來推估土壤水分特性,以黏質壤土、坋質黏土及黏土最佳,其次為壤土、砂質黏壤土及砂質壤土,而砂土則較差,其結果受到土壤粒徑大小分佈的影響。 本研究中Arya and Paris模式所得到之水分特性曲線經試誤法與壓力鍋排水實測值擬合後,得到砂土之α=1.35;砂質壤土之α=1.35~1.50;砂質黏壤土之α=2.11;壤土之α=1.40~2.0;黏質壤土之α=1.15~1.50;坋質黏土之α=1.16;黏土之α=1.30。zh_TW
dc.description.abstractIn recent years, some scholars suggested simulating and estimating the soil water characteristics by indirect methods. These are generally called“pedotransfer functions (PTFs).” In this study, the Arya and Paris Model (PTF) was used to estimate soil water characteristics from soil particle size distribution, bulk density, and particle density. The model was selected in this study because it has been used extensively for soil water characteristics estimation. According the Arya and Paris Model suggestion, the essential particle size distribution data were measured in this study. The soil water content and the matric potential can be compute by particle size distribution data. Estimated water content was compared with measured water content then evaluate their reliability. The suitable parameter in Arya and Paris Model was determined by seven soil texture. The result shows that Arya and Paris Model can obtain the best water characteristic curve in the clay, silt clay and clayey loam. Next is the loam, sandy clay loam and sandy loam. Latter is the sand. The parameters of the Arya and Paris Model are α=1.35; α=1.35~1.50; α=2.11; α=1.40~2.0; α=1.15~1.50; α=1.16; α=1.30 for sand, sandy loam, sandy clay loam, loam, clayey loam, silt clay, clay respectively in this study.en_US
dc.description.tableofcontents目錄 中文摘要 i ABSTRACT ii 目錄 iii 表目錄 v 圖目錄 vi 照片目錄 ix 第一章 前言 1 第一節 緣起 1 第二節 研究動機與目的 1 第二章 前人研究 4 第一節 Arya and Paris Model之發展 4 第二節 模式之理論及假設 6 第三節 粒徑分析之原理 9 第四節 模式中參數α的演進 12 第三章 研究材料與方法 14 第一節 研究流程 14 第二節 研究材料 15 第三節 研究方法 17 第四節 模式運算及資料分析 25 第四章 結果與討論 27 第一節 土樣粒徑分析結果 27 第二節 推估所得各土樣之土壤水分特性 35 第三節 模式推估能力之評估 45 第四節 推估的參數值α與前人研究之比較 57 第五章 結論與建議 61 第一節 結論 61 第二節 建議 62 參考文獻 64 中文部分 64 西文部分 64 附錄A 粒徑分析資料 69 附錄B 模式推估之水分特性資料 75 附錄C 實測之水分特性資料 80zh_TW
dc.language.isoen_USzh_TW
dc.publisher水土保持學系所zh_TW
dc.subjectPTFsen_US
dc.subject土壤轉換函數zh_TW
dc.subjectArya and Paris Modelen_US
dc.subjectmoisture retention curveen_US
dc.subjectparticle size distributionen_US
dc.subjectArya and Paris模式zh_TW
dc.subject水分特性曲線zh_TW
dc.subject粒徑分佈zh_TW
dc.title不同土壤質地Arya and Paris模式參數之推估zh_TW
dc.titleEstimation the parameter in Arya and Paris model for different soil textureen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:水土保持學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.