Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34662
DC FieldValueLanguage
dc.contributor李錦育zh_TW
dc.contributor盧惠生zh_TW
dc.contributor陳文福zh_TW
dc.contributor鄭皆達zh_TW
dc.contributor周文杰zh_TW
dc.contributor.advisor林昭遠zh_TW
dc.contributor.authorLin, Chia-Rungen_US
dc.contributor.author林家榮zh_TW
dc.contributor.other中興大學zh_TW
dc.date2010zh_TW
dc.date.accessioned2014-06-06T07:48:06Z-
dc.date.available2014-06-06T07:48:06Z-
dc.identifierU0005-1801200914080900zh_TW
dc.identifier.citation1.中華水土保持學會(1990)石門水庫集水區第二階段治理規劃,台灣省石門水庫管理局委託辦理。 2.水土保持局(2005)坡地集水區分析整合系統研發。 3.水土保持技術規範(2003)行政院農業委員會。 4.王如意、易任(1999)應用水文學,國立編譯館。 5.王鑫(1981)地景法邊坡穩定性的分析研究,工程環境會刊,2:73~91。 6.王鑫(1988)「地形學」,聯經出版社。 7.王鑫(1998)「台灣的地形景觀」,渡假出版社。 8.何太蓉、楊達源、陳可鋒(2004)流域管理基本法則研究-以長江流域系統管理為例,湖泊科學,第16卷增刊:71~76。 9.何春蓀(1975)台灣地質概論-台灣地質圖說明書,中華民國經濟部。 10.李三畏(1979)台灣的水資源利用-集水區經營,科學月刊。 11.李錦育(2005)集水區經營,睿煜出版社,237~287。 12.李錦育(2001)台灣崩塌地的分類與防治工法,山地學報,19(5): 425~429。 13.李錦育(2002)集水區水土資源保育的最佳管理措施,第三屆兩岸三地水土資源環境生態保育學術研討會論文集,39~46。 14.周枝燕(2007)公路邊坡破壞特性之調查研究—以台三線曾文水庫集水區路段為例,立德管理學院資源環境學系碩士班碩士論文。 15.林文賜(2002)集水區空間資訊萃取及坡面泥砂產量推估之研究,國立中興大學水土保持學系博士論文。 16.林彥享(2003)運用類神經網路進行地震誘發山崩之潛感分析,國立中央大學應用地質研究所碩士論文。 17.林昭遠、林家榮、鄭旭涵、劉昌文(2006)石門水庫集水區艾利颱風土砂災因之探討,中華水土保持學報37(4):327~336。 18.林致遠(2004)蘭陽溪泥砂來源與下游河道沖淤關係之探討,蘭陽溪生命史:「宜蘭研究」第五屆學術研討會論文集,113~129。 19.林家榮(2004)潛在危險指標應用於屏東縣集水區分級分區之研究,國立屏東科技大學水土保持系碩士論文。 20.林書毅(1999)區域性山坡穩定評估方法探討-以林口台地為例,國立中央大學應用地質研究所碩士論文。 21.林淑媛(2003)地形地質均質區劃分與山崩因子探討,國立中央大學應用地質研究所碩士論文。 22.林雪美(2004)台灣地區近三十年自然災害的時空特性,師大地理研究報告,41:99~128。 23.張石角(1980)都市山坡地利用潛力調查與製圖-方法論與實例,中華水土保持學報,11(1):13~24。 24.張舜琦,李錫堤(2007)土石流潛勢溪流之潛感分析-以石門水庫集水區為例,台灣地球科學聯合學術研討會。 25.莊耀中(2004)以地形因子判釋野溪之土石流發生潛勢,國立中興大學土木工程學系碩士論文。 26.陳本康(2005)石門水庫集水區崩塌特性及潛勢評估研究,國立中興大學水土保持學系博士論文。 27.陳信雄(1997)集水區經營學。國立編譯館。 28.陳信雄、楊蔚宇(1991)台北市山坡地就水土保持需要性之土地初級分類研討方案,台大實驗林研究報告,5(4):65~113。 29.陳彥傑(2004)台灣山脈的構造地形指標特性-以面積高度積分、地形碎形參數與河流坡降指標為依據,國立成功大學地球科學研究所博士論文。 30.陳時祖、高申錡、陳慶秋(1994)阿里山公路沿線公路邊坡崩塌與雨量關係之研究,94岩盤工程研討會,p.479。 31.陳紫娥(2000)花蓮溪與秀姑巒溪河谷沖積扇之自然環境與水土災害之比較研究,海峽兩岸流域經營管理暨東部河川集水區經營管理綜合研討會,291~299。 32.陳豪宏(1999)陳有蘭溪上游-和社集水區水土保持需要性評估之研究,國立台灣大學森林學研究所碩士論文。 33.陳翰霖、張瑞津(2004)曾文水庫對流量及輸沙量的影響,地理研究報告,39:37~54。 34.游繁結(2002)山坡地開發與水土資源保育之互動,國土資源保育管理研討會,62~77。 35.黃凱君(2008)集水區潛在崩塌區位劃定之研究,國立中興大學水土保持學系碩士論文。 36.經濟部水利處南區水資源局(2000)曾文水庫集水區第一期治理調查規劃報告。 37.經濟部德基水庫集水區管理委員會(1995)德基水庫集水區第四期整治治理規劃報告。 38.趙秋益(2003)台灣中部陳有蘭溪流域的河階地與地形演育之研究,國立高雄師範大學地理學系碩士論文。 39.潘國樑(1991)坡地開發與調查,詹氏書局。 40.鄭宇庭、易丹輝、謝邦昌(2003)統計資料分析,曉園出版社。 41.鄭皆達(2003)「水源涵養維護」與談報告(二),水資源論壇暨「水資源保育與管理」國土論壇-【永續的水資源】,43~60。 42.盧惠生 (1995)代表性集水區尺度之探討,台灣林業,21(8):12~15。 43.蕭芝昀(2008)壽豐溪集水區崩塌地變遷及特性之研究,國立東華大學自然資源管理研究所碩士論文。 44.簡嘉慶(2008)復興鄉地區土石流發生潛勢之分析研究,中國文化大學地學研究所碩士論文。 45.藍敏男(2004)出磺坑構造地質與水系發育之相關性研究,國立中央大學應用地質研究所碩士論文。 46.魏秀珍(2006)以小集水區崩塌地密度來探討影響曾文水庫流域邊坡穩定之因子,國立成功大學資源工程學系碩士論文。 47.Abam, T.K.S., 1999, Impact of dams on the hydrology of the Niger Delta, Bull. Engineering Environmental Geology, 57,239-251. 48.Baker, V.R., 1986, Introduction: Regional Landform Analysis, In N.M. Short Sr. and R. Blair Jr.,eds., Geomorphology from Space, A Global Overview of Regional Landforms, National Aeronautics and Space Administration, NASA SP-486, Washington, D.C. 49.Bell, F. G. and R. R. Maud., 2000, Landslides associated with the colluvial soils overlying the Natal Group in the greater Durban region of Natal, South Africa. Environmental Geology, 39,1029-1038. 50.Brawner, C. O. and D. Wyllie, 1976, Rock slope stability on railway projects. American Railway Engineering Association Bulletin 656, 449–474. 51.Brett, T. R., 2005, Tennessee Rockfall Management System, Dissertation submitted to the faculty of Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Civil Engineering. 52.Budetta, P., 2004, Assessment of rockfall risk along roads. Natural Hazards and Earth System Sciences 4, 71–81. 53.Bull, W., 1977, Tectonic geomorphology of the Mojave Desert. U.S. Geol. Surv. Contact Rep. 14–08–001–G–394, Office of Earthquakes, Volcanoes and Engineering, Menlo Park, Calif., 188. 54.Bull, W., 1978, Geomorphic tectonic activity classes of the south front of the San Gabriel Mountains, Calif. U. S. Geol. Surv. Contact Rep. 14–08–001–G–394, Office of Earthquakes, Volcanoes and Engineering, Menlo Park, Calif., 59. 55.Bull, W. and L. M. Fadden, 1977, Tectonic geomorphology north and south of the Garlock Fault, California, Geomorphology in Arid regions, D. O. Doehring, ed., Publications in Geomorphology, State University of New York at Bingamton, 115 – 138. 56.Bunce, C.M., D.M. Cruden. and N. R. Morgenstern., 1997, Assessment of the hazard from rockfall on a highway. Canadian Geotechnical Journal 34, 344–356. 57.Cattell, R.B., 1966, The scree test for the number of factors, Multivar. Behav. Res., 1, 245-276. 58.Charles, T. S., 2007, Erosional features of the Davidson creek drainage within oxford, Mississippi and the university of Mississippi, Mississippi Mineral Resources Institute Open - File Report 07-01S. 59.Chau, K.Y., Y.F. Tang. and R.H.C. Wong., 2004, GIS Based Rockfall Hazard Map for Hong Kong, Paper 3B 13 - SINOROCK2004 Symposium, International Journal of Rock Mechanics & Mining Science , 41(3): 530-530. 60.Chen, Y. C., Q. Sung., C.N. Chen. and J.S. Jean., 2006, Variations in Tectonic Activities of the Central and Southwestern Foothills, Taiwan, Inferred from River Hack Profiles,Terr. Atmos. Ocean. Sci., Vol. 17, No. 3, 563-578. 61.Chow, V.T., D.R. Maidment. and L.W. Mays., 1988, Applied Hydrology, McGraw Hill, New York, 7. 62.Cox, R.T., 1994, Analysis of drainage basin symmetry as a rapid technique to identify areas of possible quaternary tilt block tectonics: an example from the Mississippi embayment. Geol. Soc. Am. Bull. 106, 571 – 581. 63.Cressie, N. A. C., 1991, Statistics for spatial data, John Wiley & Son, Inc, New York. 64.Crosby, B. T. and K. X. Whipple., 2006, Knickpoint Initiation and Distribution within Fluvial Networks:236 waterfalls in the Waipaoa River, North Island, New Zealand, Geomorphology , 82(1-2):16-38. 65.Dai, F. C. and C. F. Lee., 2002, Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong. Geomorphology, 42:213-228. 66.Davis, J. C., 2002, Statistics and data analysis in geology, John Wiley & Son, New York Chichester. 67.Davis, W. M., 1899, The geographical cycle. Geographical Journal, 14,481-504. 68.Davis, W. M., 1909, Geographical essays. Boston. 69.Doyle, F.J., 1978, Digital Terrain Models: An Overview, Photogrammetric Engineering and Remote Sensing, 44(12): 1481-1485. 70.Duarte, R. M. and Marquınez, J., 2002, The influence of environmental and lithologic factors on rockfall at a regional scale: an evaluation using GIS, Geomorphology, 43, 117-136. 71.Etzelmüller, B., B. Romstad. and J. Fjellanger., 2007, Automatic regional classification of topography in Norway. Norwegian Journal of Geology, Vol. 87, 167-180.Trondheim. 72.Federal Highway Administration(FHWA), 1989, Rock slopes: design, excavation, stabilization, Circular No. FHWA: TS-89-045, Washington, D.C. 73.Feezor, D.R., M.C. Hirschi, and B.J. Lesikar., 1989, Effect of cell size on AGNPS prediction. In:ASAE Winter Meeting in New Orleans, ASAE Paper No.89-2662. 74.Florina, G., 2002, Risk-prone lands in hilly regions:Mapping stages. Applied Geomorphology, John Wiley&Sons, p.49-64. 75.Foumiadis, I. G., J. G. Liu. and P. J. Mason., 2007, Regional assessment of landslides impact in three Gorges area, China using ASTER data:Wushan-Zigui,Landslides,4,267-278. 76.Garland, G. and L. Moleko., 2000, Geomorphological impacts of Inanda Dam on the Mgeni estuary,north of Durban, South Africa, Bull. Eng. Geol. Env., 59, 119-126. 77.Grayson, R.B. and I.D. Moore.,T.A. McMahon., 1992, Physically-based hydrologic modeling, 2. Is the concept realistic Water Resource Research. 26, 2659-2666. 78.Hack, J.T., 1973, Stream-profile analysis and stream-gradient index, U.S. Geol. Surv. Jour. Res., v.1, 421-429. 79.Hare, P. W. and T. W Gardner., 1985, Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica: Tectonic Geomorphology: Proceedings of the 15th Annual Binghamton geomorphology Symposium, September 1984. Allen & Unwin: Boston. 80.Harry, R.C., 1989, Seepage Drainage, and Flow Nets, John Wiley&Sons, 293. 81.He K., X. Li., X. Yan. and D. Guo., 2008, The landslides in the Three Gorges Reservoir Region, China and the effects of water storage and rain on their stability,Environ Geol,55:55–63. 82.Hiromitsu, Y. and I. Junko., 2007, Comparison between the two triggered landslides in Mid-Niigata, Japan by July 13 heavy rainfall and October 23 intensive earthquakes in 2004, Landslides, 4:389–397. 83.Holland, W.N. and G. Pickup., 1976, Flume study of knickpoint development in stratified sediment. Geological Society of America Bulletin, 87, 76–82. 84.Horton, R.E., 1932, Drainage basin characteristics, Trans. AGU, vol. 13, 350-361. 85.Horton, R.E., 1945, Erosional development of streams and their drainage basins: hydrophysical approach to quantitative Morphology, Bull. GSA, vol. 56, 275-370. 86.Hungr, O., S.G. Evans. and J. Hazzard, 1999, Magnitude and frequency of rock falls and rock slides along the main transportation corridors of southwestern British Columbia, Canadian Geotechnical Journal 36, 224–238. 87.ISRM, 1981, Basic Geotechnical Description of Rock Mass , International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol.18, No.1, 85–110. 88.Junko, I., W. Shiaki. and F. Takahiko., 2001, Landform analysis of slope movements using DEM in Higashikubiki area, Japan, Computers & Geosciences, 27, 851-865. 89.Kaiser, H. F., 1960, The varimax criterion for analytic rotation in factor analysis. Psychometrika 23,187 -200. 90.Kobor, J. S. and J. J. Roering., 2004, Systematic variation of bedrock channel gradients in the central Oregon Coast Range; implications for rock uplift and shallow landsliding, Geomorphology. 91.Komar, P.D., 1999, Coastal Change - Scales of Processes and Dimensions of Problems, Coastal Sediments ''99 - Proceedings of the 4th International Symposium on Coastal Engineering and Science of Coastal Sediment, 1-17. 92.Kondolf, G.M., 1997, Hungry water: effects of dams and gravel mining on river channels, Environmental Management 21, 4, 533–551. 93.Loizeau, J.L. and J. Dominik., 2000, Evolution of the upper Rhone River discharge and suspended sediment load during the last 80 years and some implications for Lake Geneva, Aquatic Sciences,62, 54-67. 94.Mark, D.M., 1984, Automated Detection of Drainage Networks from Digital Elevation Models, Cartographica (Auto-Carto Six Selected Papers), 21(2-3): 168-178. 95.Miller, C.L., 1957, The Spatial Model Concept of Photogrammetry, Photogrammetric Engineering, 13(1): 31-40. 96.Miller, C.L. and R.A. Laflamme., 1958, The Digital Terrain Model Theory and Application, Photogrammetric Engineering, 14(3): 433-442. 97.Mowen, X., E. Tetsuro. and C. Meifeng., 2004, A time-space based approach for mapping rainfall-induced shallow landslide hazard ,Environmental Geology, 46:840–850. 98.Nellemann, C. and M. G. Thomsen., 1994, Terrain ruggedness and caribou forage availability during snowmelt on the Arctic Coastal Plain, Alaska. Arctic,47,361-367. 99.Ohmori, H. and K. Saito., 1993, Morphological development of longitudinal profiles in Japan and Taiwan, Bulletin of the Department of Geography, University of Tokyo, v.25,29-41. 100.Paul, B., T. B. Hoey, J. D. Jansen and I. L. Artza., 2005, Knickpoint recession rate and catchment area:the case of uplifted rivers in Eastern Scotland Earth Surface Processes and Landforms, 30, 767–778. 101.Pike, R.J. and S.E. Wilson., 1971, Elevation-Relief Ratio, Hypsometric Integral, and Geomorphic Area-Altitude Analysis, Geological Society of America Bulletin, v.82, 1079-1084. 102.Pratsinis, S. E., M. D. Zeldin. and E. C. Ellis., 1988, Source Resolution of the Fine Carbonaceous Aerosol by Principal Component-Stepwise Regression Analysis, Environmental Science and Technology, 22, 212-216. 103.Riley, S. J., S. D. DeGloria, and R. Elliot., 1999, A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences, 5:1–4. 104.Schumm, S.A., 1963, A tentative classification of alluvial river channels. US Geological Survey Circular V477. 105.Schumm, S.A., 1973, Geomorphic thresholds and complex response of drainage systems in Fluvial Geomorphology, Pub. in Geomorphology, SUNY, Binghamton, N. Y., 299-310. 106.Schumm, S.A., 1977, The Fluvial System,New York: John Willey。 107.Sharpe, C. F. S., 1938, Landslides and related phenomena: A study of mass-movements of soil and rock, Columbia Univ. Press, 137. 108.Shields, J. F. D., 2000, Reservoir effects on downstream river channel migration, Environmental Conservation, 27(1), 54-66. 109.Soeters, R. and C.J. Van Westen., 1996, Slope Instability Recognition, Analysis, and Zonation, Landslides Investigation and Mitigation, Transportation Research Board, Special Report, 129 -177. 110.Stock, J. D. and W. E. Dietrich., 2003, Valley incision by debris flows:Evidence of a topographic signature, Water Resources Research, v. 39, no.4, 1-25. 111.Strahler, A.N., 1952, Hypsometric (Area-Altitude) Analysis of Erosional Topography, Bulletin of the Geological Society of America, v.63, 1117-1142. 112.Strahler, A.N., 1964, Quantitative geomorphology of drainage basins and channel networks, Handbook of applied hydrology, Section 4-11, 4-39 to 4-76. 113.Suppe, J., 1981, Mechanics of mountainbuilding and metamorphism in Taiwan.Memoir of the Geological Society of China,4, p. 67-90. 114.Tabios, G.Q. and J. D. Salas., 1985, A comparative analysis of techniques for spatial interpolation of precipitation, Water Resources Bulletin., No. 3. 115.Taylor, A.B. and H.E. Schwartz., 1952, Unit-hydrograph lag and peak flow related to basin characteristics, Trans. AGU, voi. 33, 235-246. 116.Vandewater, C. J., W. M. Dunne., M. Mauldon., E. C. Drumm. and V. Bateman., 2005, Classifying and Assessing the Geologic Contribution to Rockfall Hazard, Environmental & Engineering Geoscience, 11(2): 141-154. 117.Varnes, D. J., 1984, Landslide Hazard Zonation; a review of principles and practice, United Nations Educational, Scientific and Cultural Organization. Paris, France. 118.Varnes, D.J., 1978, Landslide types and processes. Washington D. C.: Highway Research Board, Special Report 29,20-47. 119.Verrios, S., V. Zygouri and S. Kokkalas., 2004, Morphotectonic analysis in the ELIKI fault zone, Bulletin of the Geological Society of Greece vol. XXXVI, 1706-1715. 120.Vieux, B.E. and S. Needham., 1993, Nonpoint-pollution model sensitivity to grid-cell size. Journal of Water Resources Planning and Management. 119(2):141-157. 121.Wang G., A. Suemine., G. Furuya., M. Kaibori and K. Sassa., 2005, Rainstorm-induced landslides at Kisawa village, Tokushima Prefecture, Japan, August 2004,Landslides , 2: 235–242. 122.Weibel, R. and M. Heller., 1991, Digital Terrain Modeling, in Maguire, D.J., M.F. Goodchild and D.W. Rhind (Eds) Geographical Information Systems, Vol. 1 Harlow: Longmans, 269-297. 123.Wilson, J. L. and J. C. Gallant., 2000, Terrain analysis, John Wiley & Son, Inc., 51-58. 124.Zaitchik, B.F. and H.M. Van Es., 2003, Applying a GIS slope-stability model to site-specific land prevention in Honduras. Journal of Soil and Water Conservation:58(1):45-53. 相關網站 1.經濟部水利屬(2008),http://www.wra.gov.tw/。 2.中央研究院計算中心(2004)http://gis.ascc.net/ISTIS/,http://gis.ascc.net/ISTIS/tools.html。 3.中央氣象局(2004),http://www.cwb.gov.tw/。zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/34662-
dc.description.abstractTaiwan is locatied between tectonic plates, therefore geological structure is vulnerable. Besides, mountainous terrain and hazards of sediment disasters and floods occur frequently during the rainy season. It is an important task on water resources management and sediment control from land conservation viewpoint based on the watershed scale. Therefore, the principle of terrain evolution was applied to analyze landslide characteristics with multiple scales in this study. Results can be provided to the department of management and operation. This study contains four parts: (1) Appling hypsometric curve to analyze terrain remnant in watersheds from the frame of macro-scale geomorphic evolution; (2) Classifying geomorphic-geological homogenous area; (3) Analyzing the relation of landslide triggering factors from external force and human activities; (4) Combining results to explain potential landslides in the watersheds. Result shows that the hypsometric integral curve(HI index)is affected by geological rock strength. HI index is relatively higher when the geological rock strength is stronger. However, terrain remnant derived from the relief(HI*H index)cab be applied to watersheds comparison. The determining factors of geomorphic-geological homogenous areas are deviation from mean elevation, slope gradient, density of gully, these may be used in distinguishing the terrain characteristics. Homogeneous areas are classified by depression, steep slope, mountain ridge/spur and valley. Factors of frequency storm, distribution of river and road are different effect in watersheds. Result shows that distribution of river and road are obvious effect in watershed of Shemen reservoir and Shih-Kang Dam. Basically, effects of terrain weak on landslides are unobvious. The landslides considering factors of terrain, geology, rainfall, distribution of river and road may have the reasonable analyzed results. Terrain remnant is the major reason of landslides. The high landslide potential area can be determined by the influence of geological fault, storm and weak point in terrain. Shih-Kang Dam watershed confirms with the foregoing statement in this study. Watersheds of Shemen reservoir, Zengwun Reservoir and Sou-Fong River is unobvious, therefore, landslide potential is unobvious. The area with high density of roads and river concave banks belongs partial terrain weakness for the fragmentary landslides. Results show that multiple scales can explain landslide better than only one analysis scale. The materials of DEM, geological map, distribution of river cave bank and road density et al. are easy to obtain. The frame of this study based on the principle of terrain evolution is different with potential landslide area concluded from landslide studies in the past. Therefore, this study could generally apply to everywhere about watershed management.en_US
dc.description.abstract台灣位處板塊交界帶屬地質年代甚為年輕的地區,由於地質構造複雜且破碎,加上高山地形及水文等特性,使得台灣的地形演化(沖蝕)極為活躍,而每年雨季集水區土砂災害頻傳。如何以集水區單元經營管理水資源及泥砂問題為國土保安首要工作;因此,本研究依據地形演化原理配合地形指標,由不同尺度分析地形演化與崩塌特性之關聯性,供相關單位經營管理之用。本研究共分四個部分:(1)利用面積高度積分曲線量化集水區殘土量,由大尺度觀點瞭解地形演化;(2)由地形地質均質區進行集水區地形分類;(3)分析誘發崩塌的外力,包含不同暴雨頻率特性、水系凹岸及道路闢築對崩塌之影響;(4)最後綜合上述之分析結果以判釋集水區崩塌潛勢之區位。 研究結果顯示面積高度積分(Hypsometric integral,HI)受地層的強弱影響,地層強度高者HI相對較高;而考慮起伏量的單位殘土量(HI*H)則能用於集水區比較。有關判釋地形地質均值區之各地形因子,以距平均高程離差、坡度及水系密度較具區別力,可用於區別地形特性。而各均值區可大致分為低窪行水區、陡坡區、嶺線區及溪谷區。各集水區暴雨、水系及道路對崩塌之影響並不相同,結果顯示水系及道路影響較大集水區為石門水庫及石岡壩集水區。整體而言,地形弱區對崩塌趨勢並非特別明顯,顯示崩塌分析仍需綜合地形、地質、雨量、水系及道路等因素,才能有較合理之判釋。 地形殘土量為影響集水區崩塌之主因,若配合地質構造及暴雨高之區位與地形弱區,則可判釋為高崩塌潛勢區。研究案例中僅石岡壩集水區具備上述條件;石門水庫、曾文水庫與壽豐溪等集水區僅具備其中兩項因子,因此崩塌潛勢未如石岡壩集水區明顯。另道路與水系凹岸密度高之區位因屬局部地形弱區,因此容易發生小規模零星崩塌。研究顯示並無單一分析尺度及單元可通用於自然界之崩塌潛勢分析;由地形演化原理配合各種指標,量化不同尺度的地形特性方可獲得較佳的結果。由於DEM、地質圖、水系分佈及雨量資料皆容易取得,用於集水區有別於傳統上以集水區崩塌現況反推崩塌潛勢區之研究。因此,本研究方法可應用於不同集水區之崩塌潛勢討論。zh_TW
dc.description.tableofcontents摘 要 I Abstract III 目 錄 V 圖 目 錄 VIII 表 目 錄 XI 第一章 緒論 1 第一節 研究動機 1 第二節 研究背景 2 第三節 研究架構與流程 4 一、研究架構 4 二、研究流程 5 第二章 相關文獻 6 第一節 地形演化與地形指標 6 一、地形演化 6 二、地形指標 7 三、崩塌地定義及分類 9 第二節 能量理論與累積效應 14 一、能量理論 14 二、累積效應 15 第三節 最適分析單元 17 第四節 崩塌潛勢分析 19 第三章 研究材料與方法 24 第一節 環境概述 24 一、石門水庫集水區 25 (一)水文環境 26 (二)地形概述 27 (三)土壤及地質 27 二、石岡壩集水區 30 (一)水文環境 31 (二)地形概述 32 (三)地質及土壤 32 三、曾文水庫集水區 35 (一)水文環境 36 (二)地形概述 37 (三)地質及土壤 37 四、壽豐溪集水區 40 (一)水文環境 41 (二)地形概述 42 (三)地質及土壤 42 第二節 資料來源格式 45 第三節 分析方法及步驟 47 一、地形演化分析 49 (一)分析原理及限制 50 (二)集水區分析單元 51 (三)分析步驟 52 二、地形地質均質區分析 58 (一)均質區分析單元 58 (二)地形地質因子 59 (三)統計分析 65 三、地形弱區及暴雨頻率分析 68 (一)暴雨頻率分析 68 (二)河道凹岸單元分析 70 (三)道路轉彎處分析 74 第四節 模式限制 75 第四章 結果與討論 76 第一節 各流域地形演化情形 76 一、石門水庫集水區 79 二、石岡壩集水區 82 三、曾文水庫集水區 85 四、壽豐溪集水區 88 五、集水區整體評估 91 第二節 地形地質均質區分析 92 一、石門水庫集水區 92 二、石岡壩集水區 101 三、曾文水庫集水區 110 四、壽豐溪集水區 119 五、集水區整體評估 128 第三節 誘發崩塌外力及地形弱區分析 129 一、石門水庫集水區 129 二、石岡壩集水區 136 三、曾文水庫集水區 142 四、壽豐溪集水區 148 五、集水區整體評估 153 第四節 地形演化與崩塌潛勢探討 154 一、石門水庫集水區 154 二、石岡壩集水區 154 三、曾文水庫集水區 155 四、壽豐溪集水區 155 五、綜合討論 155 第五章 結論與建議 156 引用文獻 158 附 表 169 附 圖 176 圖1-3-1. 研究流程 5 圖2-1-1. 地形循環示意 6 圖2-1-2. 崩塌地分類 10 圖2-2-1. 地形門檻值示意 14 圖2-2-2. 空間及時間尺度元素對海岸變遷的衝擊 16 圖3-1-1. 研究樣區分布及範圍 24 圖3-1-2. 石門水庫集水區位置 25 圖3-1-3. 石門水庫集水區雨量測站分布 26 圖3-1-4a. 石門水庫集水區坡度分布 28 圖3-1-4b. 石門水庫集水區坡向分布 28 圖3-1-4c. 石門水庫集水區地層及構造分布 29 圖3-1-4d. 石門水庫集水區土壤分布 29 圖3-1-5. 石岡壩集水區集水區位置 30 圖3-1-6. 石岡壩集水區雨量測站分布 31 圖3-1-7a. 石岡壩集水區坡度分布 33 圖3-1-7b. 石岡壩集水區坡向分布 33 圖3-1-7c. 石岡壩集水區地層及構造分布 34 圖3-1-7d. 石岡壩集水區土壤分布 34 圖3-1-8. 曾文水庫集水區位置 35 圖3-1-9. 曾文水庫集水區雨量測站分布 36 圖3-1-10a. 曾文水庫集水區坡度分布 38 圖3-1-10b. 曾文水庫集水區坡向分布 38 圖3-1-10c. 曾文水庫集水區地層及構造分布 39 圖3-1-10d. 曾文水庫集水區土壤分布 39 圖3-1-11. 壽豐溪集水區位置 40 圖3-1-12. 壽豐溪集水區雨量測站分布 41 圖3-1-13a. 壽豐溪集水區坡度分布 43 圖3-1-13b. 壽豐溪集水區坡向分布 43 圖3-1-13c. 壽豐溪集水區地層及構造分布 44 圖3-1-13d. 壽豐溪集水區土壤分布 44 圖3-3-1. 地形演化分析概念 48 圖3-3-2. 地形演化分析架構 49 圖3-3-3. 集水區面積高度積分計算示意 51 圖3-3-4. 面積高度曲線形態與其代表集水區地形時期 51 圖3-3-5. 地質強度分類示意 52 圖3-3-6. 集水區殘土量計算原理 55 圖3-3-7. 集水區殘土量計算式及單位面積殘土量 56 圖3-3-8. K均值法的集群分析流程 57 圖3-3-9. 地形地質均質區分析流程 58 圖3-3-10. 網格資料萃取示意(3×3) 59 圖3-3-11. 圓形視窗示意 60 圖3-3-12. ISODATA分類流程 67 圖3-3-13. 凹岸判定流程 70 圖3-3-14. 方位角編碼 71 圖3-3-15. 凹岸辨別示意 72 圖3-3-16. 道路蜿蜒度計算示意 74 圖4-1-1. 不同集水區門檻值HI指標變化 78 圖4-1-2. 石門水庫集水區面積高度曲線 79 圖4-1-3. 石門水庫集水區HI指標及HI*H指標分布 81 圖4-1-4. 石岡壩集水區面積高度曲線 82 圖4-1-5. 石岡壩集水區HI指標及HI*H指標分布 84 圖4-1-6. 曾文水庫集水區面積高度曲線 85 圖4-1-7. 曾文水庫集水區HI指標及HI*H指標分布 87 圖4-1-8. 壽豐溪集水區面積高度曲線 88 圖4-1-9. 壽豐溪集水區HI指標及HI*H指標分布 90 圖4-2-1. 石門水庫集水區地形因子於主成分軸投影 95 圖4-2-2. 石門水庫集水區地形因子疊合情形 96 圖4-2-3. 石門水庫集水區地形地質均質區 99 圖4-2-4. 石岡壩集水區地形因子於主成分軸投影 104 圖4-2-5. 石岡壩集水區地形因子疊合情形 105 圖4-2-6. 石岡壩集水區地形地質均質區 108 圖4-2-7. 曾文水庫集水區地形因子於主成分軸投影 113 圖4-2-8. 曾文水庫集水區地形因子疊合情形 114 圖4-2-9. 曾文水庫集水區地形地質均質區 117 圖4-2-10. 壽豐溪集水區地形因子於主成分軸投影 122 圖4-2-11. 壽豐溪集水區地形因子疊合情形 123 圖4-2-12. 壽豐溪集水區地形地質均質區 126 圖4-3-1. 石門水庫集水區凹岸分布 133 圖4-3-2. 石門水庫集水區道路密度分布 135 圖4-3-3. 石崗壩集水區凹岸分布 140 圖4-3-4. 石岡壩集水區道路密度分布 141 圖4-3-5. 曾文水庫集水區水系凹岸分布 146 圖4-3-6. 曾文水庫集水區道路密度分布 147 圖4-3-7. 壽豐溪集水區水系凹岸分布 151 圖4-3-8. 壽豐溪集水區道路密度分布 152 表2-1-1. 構造地形指標 8 表2-1-2. 山崩分類表 11 表2-1-3. 崩塌地之分類與特性 12 表2-1-4. 各種地形地貌之山崩潛勢 13 表2-3-1. 地形分類的尺度 18 表2-3-2. 不同分析單元優缺點比較 18 表2-4-1. 崩塌潛勢相關研究 20 表2-4-2. 造成山崩之基本因子及其元素與內容 21 表2-4-3. 不同坡面破壞類型及其誘因 22 表2-4-4. 崩塌潛勢分析常用因子 23 表3-1-1. 石門水庫雨量測站資料 26 表3-1-2. 石岡壩集水區雨量測站資料 31 表3-1-3. 曾文水庫集水區雨量測站資料 36 表3-1-4. 壽豐溪集水區雨量測站資料 41 表3-2-1. 相關資料格式及來源 45 表3-3-1. 坡地災害相關分析單元及方法 48 表3-3-2. 不同地質對應單軸抗壓強度 53 表3-3-3. 均質區分析地形因子 64 表3-3-4. 由方位角判定河道凹岸 72 表3-3-5. 凹岸程度編碼 73 表4-1-1. 各集水區HI指標 76 表4-1-2 各集水區崩塌情形 76 表4-1-3. 地層強度與HI指標關係 78 表4-1-4. 石門水庫集水區地層強度與崩塌關係 80 表4-1-5. 石門水庫集水區HI指標與崩塌關係 80 表4-1-6. 石門水庫集水區HI*H指標與崩塌關係 80 表4-1-7. 石岡壩集水區地層強度與崩塌關係 83 表4-1-8. 石岡壩集水區HI指標與崩塌關係 83 表4-1-9. 石岡壩集水區HI*H指標與崩塌關係 83 表4-1-10. 曾文水庫集水區地層強度與崩塌關係 86 表4-1-11. 曾文水庫集水區HI指標與崩塌關係 86 表4-1-12. 曾文水庫集水區HI*H指標與崩塌關係 86 表4-1-13. 壽豐溪集水區地層強度與崩塌關係 89 表4-1-14. 壽豐溪集水區HI指標與崩塌關係 89 表4-1-15. 壽豐溪集水區HI*H指標與崩塌關係 89 表4-2-1. 石門水庫集水區地形因子相關矩陣 93 表4-2-2. 石門水庫集水區地形因子PCA特徵根變異矩陣 94 表4-2-3. 石門水庫集水區地形因子變異性 94 表4-2-4. 石門水庫集水區地形因子貢獻度 94 表4-2-5. 石門水庫集水區地形地質均質區特性 98 表4-2-6. 石門水庫集水區地形地質均質區崩塌情形 100 表4-2-7. 石岡壩集水區地形因子相關矩陣 102 表4-2-8. 石岡壩集水區地形因子PCA特徵根變異矩陣 103 表4-2-9. 石岡壩集水區地形因子變異性 103 表4-2-10. 石岡壩集水區地形因子貢獻度 103 表4-2-11. 石岡壩集水區地形地質均質區特性 107 表4-2-12. 石岡壩集水區地形地質均質區崩塌情形 109 表4-2-13. 曾文水庫集水區地形因子相關矩陣 111 表4-2-14. 曾文水庫集水區地形因子PCA特徵根變異矩陣 112 表4-2-15. 曾文水庫集水區地形因子變異性 112 表4-2-16. 曾文水庫集水區地形因子貢獻度 112 表4-2-17. 曾文水庫集水區地形地質均質區特性 116 表4-2-18. 曾文水庫集水區地形地質均質區崩塌情形 118 表4-2-19. 壽豐溪集水區地形因子相關矩陣 120 表4-2-20. 壽豐溪集水區地形因子PCA特徵根變異矩陣 121 表4-2-21. 壽豐溪集水區地形因子變異性 121 表4-2-22. 壽豐溪集水區地形因子貢獻度 121 表4-2-23. 壽豐溪集水區地形地質均質區特性 125 表4-2-24. 壽豐溪集水區地形地質均質區崩塌情形 127 表4-3-1. 石門水庫集水區頻率年暴雨關係性 129 表4-3-2. 石門水庫集水區平均日雨量與暴雨量倍數關係 130 表4-3-3. 石門水庫集水區頻率年暴雨與崩塌關係 130 表4-3-4. 石門水庫集水區水系兩側崩塌情形 132 表4-3-5. 石門水庫集水區河道左岸轉彎點位分析 132 表4-3-6. 石門水庫集水區河道右岸轉彎點位分析 132 表4-3-7. 石門水庫集水區道路兩側崩塌情形 134 表4-3-8. 石岡壩集水區頻率年暴雨相關性 136 表4-3-9. 石岡壩集水區平均日雨量與暴雨量倍數關係 137 表4-3-10. 石岡壩集水區頻率年暴雨與崩塌關係 137 表4-3-11. 石崗壩集水區水系兩側崩塌情形 139 表4-3-12. 石崗壩集水區左岸轉彎點位分析 139 表4-3-13. 石崗壩集水區右岸轉彎點位分析 139 表4-3-14. 石崗壩集水區道路兩側崩塌情形 141 表4-3-15. 曾文水庫集水區頻率年暴雨空間分佈 142 表4-3-16. 曾文水庫集水區平均日雨量與暴雨量倍數關係 142 表4-3-17. 曾文水庫集水區頻率年暴雨與崩塌關係 143 表4-3-18. 曾文水庫集水區水系兩側崩塌情形 145 表4-3-19. 曾文水庫集水區水系左岸轉彎點位分析 145 表4-3-20. 曾文水庫集水區水系右岸彎點位分析 145 表4-3-21. 曾文水庫集水區道路兩側崩塌情形 147 表4-3-22. 壽豐溪集水區頻率年暴雨空間分佈 148 表4-3-23. 壽豐溪集水區平均日雨量與暴雨量倍數關係 149 表4-3-24. 壽豐溪集水區頻率年暴雨與崩塌關係 149 表4-3-25. 壽豐溪集水區水系兩側崩塌情形 150 表4-3-26. 壽豐溪集水區水系左岸轉彎點位分析 150 表4-3-27. 壽豐溪集水區水系右岸彎點位分析 151 表4-3-28. 壽豐溪集水區道路兩側崩塌情形 152zh_TW
dc.language.isoen_USzh_TW
dc.publisher水土保持學系所zh_TW
dc.subjectGeomorphic Evolutionen_US
dc.subject地形演化zh_TW
dc.subjectGeomorphic-Geological Homogenous Areaen_US
dc.subjectPotentail Landslide Areaen_US
dc.subject地形地質均質區zh_TW
dc.subject崩塌潛勢區zh_TW
dc.titleA study of geomorphic evolution and characteristics of landslides in watershedsen_US
dc.title集水區地形演化與崩塌特性之研究zh_TW
dc.typeThesis and Dissertationzh_TW
Appears in Collections:水土保持學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.