Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34732
標題: 人造資材應用於抑止坡面土壤沖蝕及泥砂沉積之試驗研究
Artificial Geotextiles Experiment Applied to Soil Erosion Control on Hillslope and Sediment Deposition in Channel
作者: Chen, Chun-Hao
陳駿豪
關鍵字: Geotextile
人造資材
sediment trapping efficiency
anti-erosion efficiency
slope protection
抗沖蝕效率
邊坡保護
囚砂率
出版社: 水土保持學系所
引用: 1. 大村寬(1993),「水質淨化功能の調查研究概要報告書」,靜岡大學農學部森林資源科學科。 2. 王士豪(2007),「連結式護甲墊工法之試驗研究」,國立中興大學水土保持學系研究所,碩士論文。 3. 行政院水土保持局(2006),「水土保持手冊」。 4. 吳明峰(2005),「石塊之敷蓋率及嵌入對紋溝間土壤沖蝕影響之研究」,國立台灣大學生物環境系統工程學研究所,博士論文。 5. 林俊嶽(2006),「人造被覆資材對土壤沖蝕防治及植生復育成效之研究」,國立中興大學水土保持學系研究所,碩士論文。 6. 胡寶麟,(1997),“地工合成材料應用於交通工程”,經濟部工業局八十六年度工業技術人才培訓計劃講義(二)。 7. 范正成、謝宏元(1991),「田間人工降雨機之回顧、研究及比較」,中華水土保持學報,22(1):9-20。 8. 陳樹群、林俊岳、王士豪(2006),「人造被覆資材對坡地沖蝕與植生復育成效之研究」,資源科學,28(3)︰186-192。 9. 陳樹群、趙益群、安軒霈(2007),「孔隙型防砂壩對細顆粒泥砂囚砂效果之研究」,中華水土保持學報,38(1):55-63。 10. 郭耀章(2003),「地工合成材於水土保持工程上之應用」,國立屏東科技大學土木工程研究所,碩士論文。 11. Bergado, D.T., Manivannan, R.,and Balasubramaniam, A.S.(1996), “ Proposed criteria for discharge capacity of prefabricated vertical drains,” Geotextiles and Geomembranes 14, pp.481-505. 12. Broms, B.B., Chu, J., Choa, V., (1994), “ Measuring the discharge capacity of band drains by a new drain tester,” Proceedings of the Fifth International Conference on Geotextiles, Geomembranes and RelatedProducts, Singapore. 13. Chai, J.-C., Miura, N., (1999), “ Investigation of factors affecting vertical drain behavior,” Journal ofGeotechnical and Geoenvironmental Engineering ASCE 125 (3), pp.216-226. 14. Faure, Y.H., Baudoin, A., Pierson, P. and Ple, O.(2006), “A contribution for predicting geotextile clogging during filtration of suspended solids,” Geotextiles and Geomembranes 24, pp.11-20. 15. Foster, G.R.(1982),“Modeling the erosion process. In Hann, C.T., Jonson, H.P., and Brakensiek, D.L. (eds),” Hydrologic Modeling of Small Watersheds, ASAE, 5, St. Joseph., pp.297-380. 16. Gabr, M.A., Akram, M.H., and Zayed Abla.M.(1998), “Field versus laboratory filtration performance of a nonwoven geotextile with fly ash,” Geotextiles and Geomembranes 16, pp.247-255. 17. Grosh, J.L., and Jarrett, A.R.(1993), “Interrill erosion and runoff on very steep slopes,” Trans. ASAE, 37(4), pp.1127-1133. 18. Jennings, G.D., and Jarrett, A.R.(1985), “Laboratory evaluation of mulches in reducing erosion,” Trans. ASAE 28(5), pp.1466-1470 . 19. Koerner, R. M. (1998), “Designing with Geosynthetics”, Fourth Edition, Prentice Hall. 20. Lekha, K.R.(2004), “Field instrumentation and monitoring of soil erosion in coir geotextile stabilized slopes – A case study,” Geotextiles and Geomembrances, 22, pp.399-413. 21. Liu, Li.Fang., and Chu, Cai.Yuan.(2006), “Modeling the slurry filtration performance of nonwoven geotextiles,” Geotextiles and Geomembrances, 24, pp.325-330 22. Meyer, L.D.(1981), “How rain intensity affects interrill erosion,” Trans. ASAE, 24(6), pp.1472-1475. 23. Miura, N., Chai, J.-C.(2000), “Discharge capacity of prefabricated vertical drains confined in clay,” Geosynthetics International 7(2), pp.119-135. 24. Morgan, R. P. C. (1980), “Field studies of sediment transport by overland flow,”Earth Surface Processes, 3: 307-316. 25. Morgan, R. P. C.(2004), “Soil Erosion and Conservation, (third edition)”Blackwell. 26. Muthukumaran, A.E., and Ilamparuthi, K.(2006), “Laboratory studies on geotextile filters as used in geotextile tube dewatering,” Geotextiles and Geomembrances, 24, pp.210-219. 27. Rickson, R.J.(2006), “Controlling sediment at source: an evaluation of erosion control geotextiles,” Earth Surface Processes and Landforms, 31, pp.550-560. 28. Rixner, J.J., Kaemer, S.R., and Smith, A.D.(1986), “Prefabricated vertical drains, 1 (Engineering Guidelines),” Federal Highway Administration, Washington, Report No. FHWA-RD-86/168. 29. Watson, D.A., and Laflen, J.M.(1985), “Soil strength, slope, and rainfall intensity effects on interrill erosion,” Trans. ASAE, 29(1), pp.98-102. 30. Zhifei, Hu., Graham, A. Gagnon,(2006), “Impact of filter media on the performance of full-scale recirculating biofilters for treating multi-residential wastewater, ” Water Research 40, pp.1474-1480.
摘要: 本研究透過3種不同室內試驗配置,模擬人造資材分別應用於抑止裸露坡面土壤沖蝕、泥砂沉降過濾系統及河道囚砂,進而得到人造資材於下列3種試驗配置之適用性與成效評估:抑止坡面土壤沖蝕試驗中,運用室內人工模擬降雨以坡度30∘、35∘、40∘、45∘及降雨強度130mm/hr之條件下,鋪設木格框式抗沖蝕網(以下簡稱木格網)、木格網上方增鋪編織麻網及無鋪設人造資材之3種配置,於降雨延時第10min、20min、40min、60min分別量測土壤沖蝕量之變化,推估資材抑止土壤沖蝕之抗沖蝕效率,並與前人試驗結果相比較,得到人造資材應用於抑止裸露坡面土壤沖蝕之全面性成效評估;泥砂沉降過濾系統試驗為,固定流量、渠槽坡度,利用3種不同比表面積之化纖非編織孔隙資材,改變資材單位厚度及3種資材混和搭配,觀察其側面淤砂型態及囚砂率之變化,了解不同資材配置對整體囚砂率之影響,得出最佳囚砂率表現之資材搭配;將泥砂沉降過濾系統試驗所得之結果應用於河道囚砂,設計河道外掛之囚砂空間,配合孔隙資材之特性,改變上下游資材厚度時,整體淤砂型態和囚砂率之差異性。由上述試驗中,分別獲得下述之試驗結果。 抑止坡面土壤沖蝕試驗中,敷蓋率13.69%木格網於4種坡度、降雨強度130mm/hr、降雨延時60min之抗沖蝕效率皆超過50%,上方增鋪麻網後,抗沖蝕效率皆超過75%。與前人試驗結果比較,相同土壤條件、降雨強度、降雨延時,六種人造資材配置於坡度45°,抗沖蝕效率最高為木格網加麻網75.56%。在泥砂沉降過濾系統試驗中發現,下游段資材之比表面積為最大,且中間段及上游段資材之比表面積不相等時,囚砂率之表現皆較佳,其次為較高比表面積之資材單一配置。若將比表面積較小之資材放置下游段時,其囚砂率均較低。考慮泥砂沉降過濾系統清淤問題後,利用河川引流之概念,設計河道外掛囚砂空間並配合可透水之孔隙資材,發現下游段主河道砂粒沉積量明顯隨著下游段資材增厚而增加,且分佈情形與整體資材緩流效果有相關。囚砂率較高之試驗組,其砂粒沉積於河道上之囚砂量也較多,清淤方便及高囚砂率需加以取捨,端看施工時之需求。
The study focuses on the soil erosion control using the artificial geo-textiles on steep hillslopes with high rainfall intensity and reduce sediment concentration in channel. The soil erosion experiments, soil sampling from Nantou County, with rainfall intensity of 130mm/hr and 300cm100cm test flume were implemented in the artificial rainfall equipment. The soil erosion volume was evaluated with seven types of artificial geo-textiles and reference on the 35 and 45 slope. The experiment result showed that the good artificial geo-textiles must close to the soil surface to reduce the runoff energy, gully erosion and sediment transport on the 35 slope. As the slope raised, the velocity of flow were increased, the geo-textiles which lack of weight and separate from soil surface to hang in the air and cause gully erosion during the rainfall experiments. The best function for the runoff erosion is the artificial geo-textiles have lots of joints to touch the soil surface. However, the natural or chemical-fiber nets can be used to reduce the rainfall drop energy to hit the soil surface. Improper sand washing by grit industry and landslide avalanche to channel often cause increasing sediment concentration.In order to reduce sediment concentration in channel, the study of indoor experiment uses three kinds of geotextile which contains different specific surface and arcrylic gate to piece up sediment deposition and filtration system. Change the thickness, location of geotextile to obtain the relationship between geotextile and sediment trapping efficiency. Secondly, the experiment of sediment trapping in channel changes angles of geotextile and channel and adds sediment trapping space beside channel in order to deposit sediment in sediment trapping space and make the dredging activities easier and faster
URI: http://hdl.handle.net/11455/34732
其他識別: U0005-2907200813514000
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.