Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34801
標題: 河川型態特性與水力幾何關係之研究
Relation of River Morphology Characteristics and Hydraulic Geometry
作者: 吳雅鈞
Wu, Ya-Chun
關鍵字: classification of river morphology
河川型態分類
hydraulic geometry
水力幾何型態
出版社: 水土保持學系所
引用: 1. 王信凱(2000),「濕周-流量法應用於推估河川生態基流量之研究」,中興大學水土保持學系碩士論文。 2. 方偉(2001),「河川滿槽流量估算方法研究」,中興大學水土保持學系碩士論文。 3. 方琦萱(2008),「工程構造物介入對棲地物理特性之影響」,中興大學水土保持學系碩士論文。 4. 巨廷工程顧問股份有限公司(2005),「河溪生態工法參考手冊」,行政院公共工程委員會。 5. 朱菱強(2002),「水力幾何型態因子與河相關係之探討」,中興大學水土保持學系碩士論文。 6. 許炯心(2004) ,「基於對Leopold- Wolman關係修正的河床河型判別」,地理學報59(3):462-467。 7. 陳樹群(2005),「台灣地區河川型態分類技術手冊研擬(2/2)」,經濟部水利署水利規劃試驗所。 8. 陳樹群(2006),「河川型態應用於棲地環境復育之研究(1/2)」,經濟部水利署。 9. 陳樹群(2007),「河川型態應用於棲地環境復育之研究(2/2)」,經濟部水利署。 10. 陳樹群、彭思顯(2002),「台灣河川型態五層分類法研究」,中華水土保持學報33(3):175-190。 11. 楊景春(1998),「地貌學教程」,明文書局。 12. 經濟部水利署(2007),「水利工程技術規範-河川治理篇」。 13. 錢寧、張仁、周志德(1987),「河床演變學」,科學出版社,pp:19-33、339-385。 14. 錢寧、萬兆惠(1981),「泥砂運動力學」,科學出版社。 15. 賴奎棻(2004) ,「卑南溪河相型態五層分類法之研究」,中興大學水土保持學系碩士論文。 16. 謝鑒衡、丁君松、王運輝(1987),「河床演變與整治」,水利電力出版社,pp:4-35。 17. Beign, Z.B. (1981), “The Relationship between Flow-Shear and Stream Pattern,” J. Hydrologl, 52: 307-319. 18. Benson, M.A. and D.M. Thomas (1966), “A Definition of Dominant Discharge,” Bulletin International Association Scientific Hydrology, 11: 76-80. 19. Barbour, M. T., Gerritsen J., Snyder B. D., and Stribling J.B. (1999), Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish. 2nd. ed. EPA 841-B- 99-002. US. Environmental Protection Agency, Office of Water, Washington. 20. Chang, H.H. (1987), Fluvial Processes in River Engineering, United States of America, pp: 261-297. 21. Fredose, J. (1978), “Meandering and Braiding in Rivers,” J Fluid Mech, 84: 609-624. 22. Gippel, C. J. and M. J. Stewardson (1998), “Use of Wetted Perimeter in Defining Minimum Environmental Flows,” Regul. Rivers: Res. Mgmt., 14: 53-67. 23. Horton, R.E. (1945), “Erosional Development of Streams and Their Drainage Basins: Hydrophysical Approach to Quantitative Morphology,” Geol. Soc. America Bull., 56: 275-370. 24. Jan H. van den Berg (1995), “Prediction of alluvial channel pattern of perennial rivers,”Geomophology 12 259-279. 25. Lacey, G. (1929-1930), “Stable Channels in Alluvium,” Minuses of Proc., Inss Civil Engrs., London, 229: 259-292. 26. Ladson,A.R., White L.J., Doolan J.A., Finlayson B.L., Hart B.T., Lake P.S., and Tilleard J.W., (1999), “Development and testing of an Index of Stream Condition for waterway management in Australia,” Freshwater Biology, 41: 453-468. 27. Lane, E.W. (1957), “A Study of the Shape of Channels formed by Natural Streams Flowing in Erodible Material,” M. R. D. Sediment Series No. 9, U.S. Army Engineering Division, Missouri River, Corps of Engineers. 28. Leopold, L.B. and T. Maddock (1953), “The Hydraulic Geometry of Stream Channels and Some Physiographic Implications,” U. S. Geol. Survey, Prof. Paper No.252:56 pages. 29. Leopold, L.B. and M. G. Wolman (1957), “River Channel Patterns: Braided, Meandering and Straight,” USGS Professional Paper 282-B, pp: 45-62. 30. Leopold, L.B., Wolman, M.G. and Miller, J.P. (1964), Fluvial Processes in Geomorphology, San Francisco, W. H. Freeman and C., pp: 552. 31. Lindley, E.S. (1919), “Regime Channels,” Minuses of Proc, Punjab Engin. Cong., Lahore. Indic, 7: 63-74. 32. Nixon, M. (1959), “A Study on the Bank-Full Discharge of Rivers in England and Wales,” Proc. Inst. Civil Eng., 12: 157-174. 33. Park C.C. (1977), “World-Wide Variations in Hydraulic Geometry Exponents of Stream Channels: An analysis and Some Observations,” Journal of Hydrology, 33: 133-146. 34. Plafkin, J. L., Barbour M. T., Porter K. D., Gross S. K. and Hughes R. M. (1989), Rapid bioassessment protocols for use in streams and rivers : Benthic macroinvertebrates and fish. EPA/444/4-89-001. US. Environmental Protection Agency, Washington, DC. 35. Rankin, E. T., (1989), The qualitative habitat evaluation index (QHEI), rationale, methods, andapplication, Ohio EPA, Division of Water Quality Planning and Assessment, Ecological Assessment Section, Columbus, Ohio. 36. Rhodes, D.D. (1977), “The b-f-m Diagram: Graphical Representation and Interpretation of At-A-Station Hydraulic Geometry,” Amer. J. Sci., 277: 73-96. 37. Rosgen, D. (1996), Applied River Morphology, Printed Media Companies. 38. Schumm, S. A. (1977), The Fluvial System, Wiley and Sons, New York. United States Department of Agriculture(1998),Stream Visual Assessment Protocol. 39. Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E.(1980). “The river continuum concept. Canadian,” Journal of Fisheries and Aquatic Science 37: 130-137. 40. Xu Jiongxin, (2004), “Comparison of Hydraulic Geometry Between Sand and Gravel-bed rivers in Relation to Channel Pattern Discrimination,” Earth Surf. Process. Landforms 29: 645-657.
摘要: 本研究主要在於探討不同之河川型態與水力幾何型態間的關係,所謂水力幾何型態系指流量、輸砂率、河寬、水深、流速及河流平面型態間的相互關係。以河川型態五層分類法作為理論基礎,從河相學的觀點出發,將主流平面型態分成順直、蜿蜒與辮狀三大類型。在河床質特性方面,由於砂質河床與礫石河床在水力學特徵與泥砂運動方面差異甚大,因此本文在討論時予以分開,其分類以中值粒徑(D50)小於2mm稱為細顆粒;大於2mm 則為粗顆粒。順直河道由於常取決於邊界條件,在可動邊界條件下,是一種難以長期穩定存在的型態,而其與水流、泥砂運動間缺乏明確的關係,故本文並未將順直河道納入分析。因此,本研究共探討細顆粒辮狀、粗顆粒辮狀、細顆粒蜿蜒及粗顆粒蜿蜒四種型態與水力幾何間的關係。 研究發現河寬-流量關係、寬深比-流量關係及深度-流量關係可將蜿蜒及辮狀河型大致區分開來。從寬深比-流量關係中得知河川型態為辮狀型,其寬深比大多大於40,為寬淺型河道。由溪流功率-寬深比及相對剪切力-寬深比關係中,皆得到輸砂強度較強而河岸抗沖蝕性較弱時,是出現辮狀河型的有利條件。以 為指標,代表水流作用力和床面泥沙顆粒抵抗力,觀察其與寬深比之關係,發現其可由兩條線區分粗顆粒蜿蜒、粗顆粒辮狀、細顆粒蜿蜒及細顆粒辮狀四種河型。
This research lies in probing into the relation among different river morphology and hydraulic geometry. The hydraulic geometry refers to the interrelationship among water discharge, sediment discharge, stream width, depth, velocity, and planform for rivers. This research based on classification of river morphology with five levels. On this basis, some diagrams for discrimination of straight, meandering and braided channel patterns. In bed material characteristic, because difference in hydraulic geometry and mechanics of sediment transport among sand-bed and gravel-bed rivers with different channel patterns, so in this research separates while discussing. It may be classed as fine particle and course particle rivers using the bed-material median sizes of <2 mm and >2 mm respectively. As long straight channels with a sufficiently long length are often related to some specific local conditions, rather than being controlled by interactions between sediment-carrying streamflow and channel boundary material, the straight pattern is excluded in this study. Thus the following four types are involved: meandering with fine particle; braided with fine particle; meandering with course particle; and braided with course particle. One can draw a straight line almost dividing between braided and meandering rivers by the relationship between water surface width and bankfull discharge; between width-depth ratio and bankfull discharge and also between depth and bankfull discharge. When width-depth ratio>40, braided pattern appears. According to the relationship between stream power and width-depth ratio and the dimensionless shear stress; this indicates that when the bedload transport rate is high but bank confinement is low; channel braiding may occur. The dimensionless index; ; reflects both the flow strength and the erosion resistance of bed material. The relationship between the dimensionless index and width-depth ratio shows that has two straight lines can divide the four types of channel pattern.
URI: http://hdl.handle.net/11455/34801
其他識別: U0005-2008200916373100
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館

Show full item record
 
TAIR Related Article
 
Citations:


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.