Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34803
標題: 不同深度土壤熱擴散係數之推估與探討
Estimation of the thermal diffusivity for different soil depth
作者: 林佩佩
Lin, Pei-Pei
關鍵字: soil temperature
土壤溫度
thermal diffusivity
熱擴散係數
出版社: 水土保持學系所
引用: 沈志軒(2006),蓮華池試驗集水區淨輻射與土壤熱能變化特性之探討,國立臺灣大學森林環境暨資源學系碩士論文。 蔡子衿、吳清吉、許武榮(2008),台灣土壤溫度變化和土壤熱擴散係數推估,大氣科學36(2):83-100。 盧惠生、林壯沛、黃良鑫(2000),蓮華池地區天然闊葉林不同土壤深度的溫度日週期變化,中華水土保持學報,31(4):267-278。 Abu-Hamdeh, Nidal H. and Randall C. Reeder (2000). Soil thermal conductivity: effects of density, moisture, salt concentration, and organic matter. Soil Sci. Soc. Am. J. 694:1285-1290. Arshad, M. A. and R. H. Azooz (1996). Tillage effects on soil thermal properties in a semiarid cold region. Soil Sci. Soc. Am. J. 60: 561–567. Bachmann, J., R. Horton, T. Ren, and R. R. van der Ploeg (2001). Comparison of thermal properties of four wettable and four water-repellent soils. Soil Sci. Soc. Am. J. 65: 1 675–1 679. Bristow, K.L., G.J. Kluitenberg, and R. Horton (1994). Measurement of soil thermal properties with a dual-probe heat-pulse technique. Soil Sci. Soc. Am. J. 58:1288–1294. Carslaw, H. S. and Jaeger, J. C. (1959). Conduction of Heat in Solids. Clarendon Press, Oxford. 510pp. Dĕdeček, P., J. Šafanda, M. Krešl, and V. Č ermák (2005). Interannual changes of soil temperature, moisture and thermal diffusivity under surface. Geophysical Research Abstracts, Vol. 7, 05321, 2005. De Vries, D. A. (1952). A nonstationary method for determining thermal conductivity of soil in situ. Soil Sci. 73:83-89. De Vries, D.A. (1963). Thermal properties of soils. In Physics of plant environment. W.R. van Wijk (ed). North-Holland, Amsterdam. Fritton, D. D., W. J. Busscher, and J. E. Alpert (1974). An inexpensive but durable thermal conductivity probe for field use. Soil Sci. Soc. Am. J. 38:854-855. Ghauman, B.S. and R. Lal (1985). Thermal conductivity, thermal diffusivity, and thermal capacity of some Nigerian soils. Soil Sci. 139:74–80. Gupta, S.C., J. K. Radle, and W. E. Larson (1981). Predicting temperatures of bare and residue covered soil with and without a corn crop. Soil Sci. Soc. Am. J. 45:405-412. Gupta, S. C., W. E. Larson, and R. P. Allmaras (1984). Predicting soil temperature and soil heat flux under different tillage- surface residue condition. Soil Sci. Soc. Am. J. 48:223-232. Hare, M. A., J. Ben-Asher, A. D. Matthias, and A. W. Warrick (1985). A simple method to evaluate daily positive soil heat flux. Soil Sci. Soc. Am. J. 49:45-47. Hillel, D. (1982). Introduction to Soil Physics. Academic Press, San Diego, CA. 392pp. Jaramillo, D. F., L. W. Dekker, C. J. Ritsema, and J. M. H. Hendrickx (2000). Occurrence of soil water repellency in arid and humid climates. J. Hydro. 231: 105–111. Lenau, H. H. (1954). Improved models of thermal diffusion in the soil. Trans. Am. Geophys. Union, 35:121-132. Markle, Jeff M., Robert A. Schincariol, John H. Sass, and John W. Molson (2006). Characterizing the Two-Dimensional Thermal Conductivity Distribution in a Sand and Gravel Aquifer. Soil Sci. Soc. Am. J. 70:1281–1294 (2006). Marshall, T. J. and J. W. Holmes (1988). Soil Physics. 2nd ed. Cambridge Univ. Press, New York. Meikle, R. W. and T. R. Treadway (1979). Amathematical method for estimating soil temperature. Soil Sci. 128:226-242. Nassar, I. N. and R. Horton (1989). Determination of the apparent thermal diffusivity of a nonuniform soil. Soil Sci. 147(4): 238-244. Ochsner, T.E. , R. Horton, and T. Ren (2001). A new perspective on soil thermal properties. Soil Sci. Soc. Am. J. 65:1641-1647. Parikh, R. J., J. A. Havens, and H. D. Scott (1979). Thermal diffusivity and conductivity of moist porous media. Soil Sci Soc. Am. J. 43:1050-1052. Riha, S. J., K. J. Mclnnes, S. W. Childs, and G. S. Campbell (1980). A finite element calculation for determining thermal conductivity. Soil Sci. Soc. Am. J. 44:1323–1325. Silans, A. M. B. P , Bruno A. Monteny, and J. P. Lhomme (1996). Apparent soil thermal diffusivity, a case study: HAPEX-Sahel experiment. Agricultural and Forest Meteorology 81:201-216. Thibodeaux, L.J. Chemodynamics (1996). Environmental movement of chemicals in air, water, and soil. Wiley Intercience, New York: 1996; 624 pp. Tikhonravova, P. I. (2007). Effect of the water content on the thermal diffusivity of clay loams with different degrees of salinization in the transvolga region. Eurasian Soil Sci. 40: 47–50. Wierenga, P.J., D.R. Nielsen, and R.M. Hagan (1969). Thermal properties of soil based upon field and laboratory measurements. Soil Sci. Soc. Am. J. 33: 354-360. Yadav, M. R. and G. S. Saxena (1973). Effect of compaction and moisture content on specific heat and thermal capacity of soils. Journal Indian Soc. Soil Sci. 21:129–132. Zhou, X., N. Persaud, D. P. Belesky, and R. B. Clark (2007). Significance of Transients in Soil Temperature Series. Pedosphere 17(6): 766–775.
摘要: 本文係以台北縣華梵大學坡地試區2004年3月至2005年1月間兩種地表狀態不同深度之土壤溫度進行研究,資料為地表與深度5cm、10cm、20cm及30cm每半小時紀錄一筆之土壤溫度。另為排除降雨時重力水對溫度之影響,故選取無雨日之資料進行分析。研究中先推估出各無雨日之熱擴散係數,再以兩種方式計算月平均擴散係數,其一為先將每月同一小時之土壤溫度平均後,以24小時平均溫度推求月平均熱擴散係數,其二為將每月無雨日之熱擴散係數平均得之。研究中進一步探討不同深度平均擴散係數之特性,最後討論以月平均擴散係數推估土壤溫度與實測土溫之關係。 研究結果顯示,土壤溫度正弦曲線之振幅隨深度增加而減少,以季節區分,夏季溫度之振幅較冬季大。而各深度溫度達最大值之時間隨深度增加而有延遲之現象。利用推估式計算不同深度之月平均熱擴散係數,在地表下10-20cm深度時有下降趨勢,在地表20cm以下則又有上升之現象。利用兩種計算之月平均熱擴散係數,以將各月中每日之熱擴散係數平均取得之值,所推估之溫度變化與實測溫度變化之差異較小,而以每月24小時平均溫度計算之月平均熱擴散係數,其推估誤差較大。
This study measured the daily soil temperature of different depth during March 2004 to January 2005 from the isolated area of two experimental plots of Huafan University in Taipei. Temperatures were collected by data logger at 30-minute intervals from thermistor probes installed at surface, 5, 10, 20 and 30cm depths. For eliminating influence of gravitational water, the soil temperature was taken on by non-raining days. The thermal diffusivity of non-raining days was estimated first and then the mean monthly thermal diffusivity was calculated by two methods; one was calculated by mean thermal diffusivity of monthly non-raining days, and the other was estimated from mean monthly temperature. Finally, the properties of thermal diffusivity in different depths were discussed and estimating the relation between measured and predicted soil temperature by monthly mean thermal diffusivity were compared. The results indicated that the amplitude of the temperature sine curve led to an decrease due to the soil depth increase and the value of the amplitude in summer was higher than in winter. The time of achieving the peak temperature also decrease with soil depth increase. To estimate the thermal diffusivity calculated from the different soil depth showed the values of thermal diffusivity led to decrease in 10-20cm depth and increase in 30cm depth. Monthly percentage of mean variation between measured and predicted soil temperature, estimated from two methods were used to analyze the mean monthly thermal diffusivity, showed that temperature calculated with mean daily of thermal diffusivity had better result.
URI: http://hdl.handle.net/11455/34803
其他識別: U0005-2008200916383800
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.