Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34807
標題: 烏溪流域三角形單位歷線之研究
Study on the Triangular Unit Hydrograph for Wu River Catchment
作者: 林昭儀
Lin, Chao-Yi
關鍵字: 三角形單位歷線
triangular unit hydrograph
線性水庫模式
瞬時單位歷線
動差法
linear reservoir model
instantaneous unit hydrograph
generalized method of moment
出版社: 水土保持學系所
引用: 1.王希夫,1979,水文分析程式之TUHPC程式。 2.王如意、易任,1996,應用水文學,中國土木水利工程學會。 3.行政院農業委員會水土保持局,2006,水土保持手冊(工程篇)。 4.行政院農業委員會水土保持局,1996,水土保持技術規範。 5.李光敦,2002,水文學Hydrology,五南圖書出版有限公司。 6.李光敦,2005,線性水庫模式與無因次單位歷線模式之時間參數探討,中華水土保持學報36(2):133-144。 7.林昭遠、林文賜,2000,集水區地文水文因子自動萃取之研究,中華水土保持學報31(3):247-256。 8.林昭遠、林文賜、張力仁,1999,數值地形模型應用於集水區規劃與整治之研究,中華水土保持學報30(2):149-155。 9.吳建民,1991,泥沙運行學,中國土木水利工程學會。 10.烏溪環境流域資訊http://bumf.teepb.gov.tw/river/index.html 11.張為宇,2003,「三角形單位歷線之修正與探討」,碩士論文,中原大學土木系所。 12.經濟部水利署網站http://www.wra.gov.tw/。 13.經濟部,2009, 98年度濁水溪流域逕流測預報系統擴充及維護期初報告,經濟部水利署第四河川局。 14.農委會,1991,臺灣水文資料電腦檔應用之研究(9)全省主要流量站單位歷線之推求(二),臺灣省水利局。 15.農委會,1993,臺灣水文資料電腦檔應用之研究(12)三角形單位歷線參數之研究,臺灣省水利局。 16.Chow, V.T., 1959, Open Channel Hydraulic, McGraw-Hill Book Co., New York. 17.Kirpich, Z.P., 1940,“Time of concentration of small agricultural watersheds,” Civil Engrg., 10(6), 362. 18.Lee, K.T., and Yen,B.C.,1997, “Geomorphology and kinematic-wave based Hydrograph derivation,” J.Hydr.Engrg.,ASCE,123(1), 73-80. 19.Linsley, .R. K., M. A. Kohler and J. L. H. Paulhus, “Hydrology for Engineers,” 2nd edition, 1975. 20.Nash, J.E., 1957, “The form of the instantaneous unit hydrograph,” IASH publication (3-4)45,114-121. 21.Rodriguez-Iturbe, I., and Valdes J. B. 1979. “The geomorphologic structure of hydrologic response,” Water Resour. Res., 15(6), 1409-1420. 22.Sherman, L. K. 1932. “Streamflow from rainfall by the unit-graph method,” Eng.New-Rec., 108,501-505. 23.Snyder, F. F., 1938. “Synthetic unit-hraphs,” Trans. Am. Geophys. Union, 19, 447-454. 24.Soil Conservation Service, 1957. “Use of Storm and Watershed Characteristics in Synthetic Hydrograph Analysis and Application,” U.S. Department of Agriculture, Washington, D. C. 25.Soil Conservation Service, 1975. “Urban Hydrology of Small Watersheds,” Technical Release 55, Watershed, D. C. (updated 1986).
摘要: 在水文設計工程上,一般推估某集水區之降雨逕流歷線,需要較繁複之地文及水文方面資料,但水文紀錄資料常因年代久遠或人為因素等有所短缺,故可利用參數條件少且易於推求之三角形單位歷線,即可推得某集水區之流量歷線,及其洪峰流量和洪峰時間。 無因次單位歷線模式及線性水庫模式為目前台灣常見用以進行降雨逕流模擬推估之水文模式,其n值和K值之推算,可藉由有效降雨和直接逕流歷線之第一階動差和第二階動差求得,而nK值之物理意義為稽延時間值。本研究以試誤法逐一調整n值及K值,使其與實際流量歷線相近,以助得良好的模擬結果。 本研究選用1994-2008年間降雨強度為中度(中度颱風的定義為其颱風之中心附近最大風速每秒32.7至50.9公尺,相當12~15級風)以上之颱風十場,經由檢定驗證得烏溪流域各子集水區平均無因次單位歷線,再推求各場颱洪事件之m值( )予以平均,得其適合各子集水區之m值,大里溪之m值為4.024,南港溪之m值為3.13,北港溪之m值為3.603,貓羅溪之m值為3.39。
In the hydrologic design project, the estimation of hydrograph generally needs the complicated topographic and the hydrologic data, but they are often lost due to ages and human factors. The triangular unit hydrograph composes of few parameters and are easily estimated, and then it was used very often. From the hydrograph, the peak discharge and peak time can be obtained. General methods of rainfall-runoff routing in Taiwan are the dimensionless unit hydrograph and the linear reservoir model. By using 1st moment and 2ndmoment of effective rainfall and direct runoff hydrograph, the values of n and K can be calculated, and the physical meaning of nK is lag time. This study uses trial and error method to adjust the values of n and K to fit with the actual runoff hydrograph. Ten middle typhoon events (middle typhoon definition: nearby the center of typhoon its maximum wind speed is 32.7 -50.9 m/s, equivalent to wind level 12~15) during 1994-2008 are adopted to verify the simulation by various methods and then the average dimensionless unit hydrographs are obtained. The average m values are found to fit each watershed in Wu River. The m value is 4.024 for Dali River, 3.13 for Nangang River, 3.603 for Beigang River, 3.39 for Maoluo River.
URI: http://hdl.handle.net/11455/34807
其他識別: U0005-2008200918012700
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.