Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34837
標題: 玉峰溪集水區崩塌型態與分佈特性之探討
Types and Distribution of Landslides in the Yufong River Watershed
作者: 翁愷翎
Weng, Kai-Ling
關鍵字: Yufong river
玉峰溪
landslide
length/width ratio
landslide type
hillslope form
崩塌
長寬比
形狀
坡形
出版社: 水土保持學系所
引用: 1.丁驌(1958),「地形學」,國立編譯館。 2.工業技術研究院能源與資源研究所(1992),「崩塌地調查、規劃與設計手冊(地滑篇)」,行政院農業委員會水土保持局。 3.日本國土防災技術株式會社(1996),「斜面崩塌實驗計畫書」。 4.王雁平(2007),「崩塌面積及崩塌形狀對崩塌深度之影響」,九十六年度農業工程研討會論文集。 5.王雁平(2008),「崩塌因子對崩塌率及崩塌深度關係之研究」,國立中興大學水土保持學系碩士論文。 6.王瑞斌(1999),「南投九九峰卵礫石之排列及其形狀對坡度的影響」,國立台灣大學地質科學研究所碩士論文。 7.王鑫(1988),「地形學」,聯經出版事業公司。 8.行政院水土保持局(2007),「石門水庫玉峰等集水區整體調查規劃成果報告書」。 9.何春蓀(1986),「台灣地質概論-台灣地質圖說明書」,經濟部中央地質調查所。 10.吳仁明(2006),「礫石坡面土石流發生機制之探討」,國立中興大學水土保持學系博士論文。 11.吳佐川(1993),「台灣地區崩塌地區域特性之研究」,國立台灣大學森林學系碩士論文。 12.吳俊鋐(2005),「降雨引發邊坡崩塌潛勢評估模式之建構」,國立中興大學水土保持學系博士論文。 13.吳明隆、涂金堂(2005),「SPSS與應用統計分析(二版)」,五南圖書出版公司。 14.呂岡侃(2003),「南投縣九九峰土石流發生區之地形特徵」,國立台灣大學地理環境資源學研究所碩士論文。 15.李馨慈、陳時祖、魏秀珍、余螣鐸、王建力(2006),「曾文水庫集水區崩塌地調查與規模頻率分析」,岩盤工程研討會論文集,第409-417頁。 16.林昭遠、蔡真珍、林家榮(2004),「集水區崩塌區位分析與防治對策」,2004坡地防災創新研發成果研討會論文集,第119-128頁。 17.徐永年、匡尚富、李文武、王力(1998),「坡面形態對崩塌產生的影響初探」,海峽兩岸山地災害與環境保育研究論文集,第256-262頁,四川科技出版社。 18.徐永年、匡尚富、李文武、王力(1999),「邊坡形狀對崩塌的影響」,泥沙研究,5:67-73。 19.張石角(1987),「山坡地潛在危險之預測及其在環境影響評估之應用」,中華水土保持學報,18(2):41-48 20.陳本康(2004),「石門水庫集水區崩塌特性及潛勢評估研究石門水庫集水區崩塌特性及潛勢評估研究石門水庫集水區崩塌特性及潛勢評估研究」,國立中興大學水土保持學系博士論文。 21.陳信雄(1995),「崩塌地調查與分析」,渤海堂出版社。 22.經濟部水利署北區水資源局(2008),「石門水庫集水區經營管理保育對策及建立集水區地理資訊系統資料庫建置」報告書。 23.游繁結(2003),「土壤孔隙特性與滲流線之動態變化對土石流發生之影響(1/2)」,行政院國家科學委員會專題研究計畫。 24.謝兆申、王明果(1989),「台灣土壤」,國立中興大學土壤調查試驗中心。 25.鍾翼戎(2003),「九二一地震引致九九峰崩塌特性之研究」,國立中興大學水土保持學系碩士論文。 26.小出博(1954),「山崩れ」,日本古今書院。 27.Bak, P., Tang, C. and Wiesenfeld, K., “Self-organized criticality,1988,” Phys. Rev. A, 38(1):364-374. 28.Chen, C.Y., Yu, F.C., Lin, S.C. and Cheung, K.W. ,2007, “Discussion of landslide self-organized criticality and the initiation of debris flow,” Earth Surface Processes and Landforms , 32:197–209. 29.Dadson, S. J. ,2004, “Erosion of an Active Mountain Belt,” Ph. D. Thesis, Department of Earth Sciences, University of Cambridge. 30.Dalrymple, J., Long, R., and Conacher, A. , 1968 , “A hypothetical nine-unit land- surface model,” Zeitschrift fur Geomorphologie, 12: 60-76 31.Fookes, P.G., Sweeney, M., Manby, C.N.D., and R.P., Martin, 1985,“Geological and geotechnical engineering aspects of low-cost roads in mountainous terrain,”Engineering Geology, 21:1-152 32.Fujii, Y., “Frequency distribution of landslides caused by heavy rainfall,1969,” J. Seismol. Soc. Japan, 22:244-247. 33.Guthrie, R. H., Evans, S. G., 2004, “Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia,” Earth Surface Processes and Landforms, 29:1321-1339. 34.Guzzetti, F., Malamud, B. D., Turcotte, D. L. and Reichenbach, P., 2002, “Power-law correlations of landslide areas in central Italy,” Earth Planet Sci Lett.,195:169-183. 35.Hirano, M. and H. Ohmori, 1989,“Magnitude-frequency distribution for rapid mass movements and its geomorphological implication,”Trans. Japane. Geom. Union. 10(2):95-111. 36.Hovius, N., C. P. stark and P. A. Allen, 1997 ,“Sediment flux from a mountain belt derived by landslides mapping,”Geology 25(3):231- 234. 37.Hovius, N., Stark, C.P., Chu, H. T., Lin, J. C., 2000, “Supply and removal of sediment in a landslide-dominated mountain belt: Central Range, Taiwan,” J. Geol., 108:73-89. 38.IAEG Commission on Landslides,1990,“Suggested Nomenclature for Landslides,”Bulletin of the International Association of Engineering Geology, 41: 13-16. 39.Keefer, D.K, 2000,“Statistical Analysis of an Earthquake-Induced Landslide Distribution-the 1989 Loma Prieta, California Event,”Engineering Geology, 58:231-249. 40.Malamud, B.D., Turcotte, D.L., Guzzetti, F., Reichenbach, P., 2004, “Landslide inventories and their statistical properties,” Earth Surface Processes and Landforms, 29:687-711. 41.Parsons, A.J., 1988 ,“Hillslope Form”, London and New York, Routledge. 42.Ruhe, R. V. ,1975 ,“Geomorphology: Geomorphic Processes and Surficial Geology,”Boston: Houghton Mifflin, 246. 43.Skempton(1970), A.W., 1970,“First-time slide in over-conaolidated clays,”Geotechnique,20:320-324. 44.Turcotte, D.L., 1997, “Fractals and Chaos in Geology and Geophysics”, 2nd edn., Cambridge University Press, Cambridge. 45.Van Den Eeckhaut, M., Poesen, J., Govers, G.., Verstraeten, G. and Demoulin, A. , 2007 ,“Chaeacteristics of the size distribution of recent and historical landslides in a populated hilly region,” Earth Planet Sci Lett., 256:588-603. 46.Varnes, D.J., 1978, “Slope Movements and Type and Process in Landslides:Analysis and Control,” Transportation Res. Board Nat. Ac. Sci., Washington Spec., Rep.176.
摘要: 台灣山區近十年來多處發生重大土砂災害,其中2004年艾利颱風更是重創石門水庫與其上游集水區,造成玉峰溪集水區多處產生大型崩塌,而為瞭解其崩塌之特性,乃選取崩塌面積、長度、最大寬度、長寬比、平均深度、體積、發生高程、高差、平均坡度、所在地層、與道路或溪流(溪溝)距離及坡形等特性進行探討,更以長寬比對崩塌形狀進行分類,並進一步探討崩塌形狀與上述特性之關係,進而建立崩塌與其位處之邊坡型態的關聯性。 本研究利用正射影像圖、地形數值模型及崩塌地圖層經GIS軟體萃取上述特性進行分析,分析結果得知玉峰溪集水區共有601個崩塌地,崩塌面積比率為2%,整體之平均長寬比值為2.47,較多崩塌地發生於高程1,400 m以下或坡度30°~50°或鄰近道路、溪流或位於澳底層等特性之地區;另依長寬比0.5及1.5將崩塌形狀分為三類,其中平面狀有30個,塊狀有190個,長條狀有381個,其平均深度、體積及坡度間無顯著差異,僅高差之特性與各形狀中不同長寬比之崩塌地相關性較高,而平面狀崩塌地經分析發現多位於道路邊但不鄰近溪流。崩塌與坡形之特性則顯示坡面橫、縱向型態呈凸坡者,較少發生崩塌,其中橫向為凸坡時,崩塌後易形成塊狀崩塌地;呈直坡者,則較易發生崩塌,而發生崩塌後之坡面橫、縱向型態易呈現為直坡,不易為凸坡,其中橫向為直坡時,崩塌後容易形成塊狀或長條狀。
Many serious landslide disasters occurred in mountain area in Taiwan in the past decade. Landslides due to Typhoon Aere in 2004 in Shihmen reservoir watershed is a serious disaster example. The purpose of the study is to analyze the landslide characteristic, including the landslide area, length, max width, aspect ratio, average depth, volume, elevation, difference of elevation, average slope degree, geological, distance from road, distance from river, and hillslope form, and establish a relationship between them. The analysis of the landslide types and characteristics are discussed in the study. The landslide inventory and landslide characteristic are made by analyzing the aerial photographs, Digital Elevation Model, Digital Terrain Model. There are 601 landslides in Yufong river watershed. The landslide ratio and the average length/width ratio are 2% and 2.47, respectively. Landslide cases centralizes in the altitude of >1400m, slope degree between 30°~50°, near river or road, and Aoti formation. Landslide types are classified into three types by length/width ratio, including plan (30), block (190), and banding (381). The average depth, volume, and average slope degree of the landslides are not significant different between three types. There is better positive correlation between elevation and aspect ratio for different landslide types. And plan type landslides are near roads, but not rivers. There are less landslides on convex shape of hillslope cross or vertical section, and easily develops block type landslides on convex shape of cross section. Another, more landslides occur on straight shape of hillslope cross or vertical section, and the shape of hillslope don't become convex after landsliding, and the type of landslides easily become block or banding on straight shape of cross section.
URI: http://hdl.handle.net/11455/34837
其他識別: U0005-2307200911331300
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.