Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34850
標題: 以自然淨化法處理畜牧廢水之研究
The Study of Natural Treatment System for Purifying Livestock Wastewater
作者: 吳明賢
Ming-Shien-Wu
關鍵字: 水土保持設施
soil and water conservation facilities
雨量
污染去除效率
遞移
rainfall
point contaminant removing efficiency
deliver rate
出版社: 水土保持學系所
引用: 參考文獻 1. 內政部營建署,2005,經營台灣生態水池調查評估與規劃設計操作手冊,內政部營建署編印。 2. 石再添、張津端、黃阿有,1986,基隆河的水污染及其變遷,工程環境會刊(7):55-66。 3. 行政院農業委員會水土保持局,2007,水生植物手冊,水土保持局編印。 4. 行政院農業委員會水土保持局,2007,坡地生態水池多元化保育功能之研究,行政院農業委員會水土保持局委託專業服務計畫。 5. 行政院農業委員會水土保持局,2008,坡地生態水池多元化保育功能之研究(二),行政院農業委員會水土保持局委託專業服務計畫。 6. 行政院農業委員會水土保持局,2008,坡地生態水池規劃參考手冊,水土保持局編印。 7. 行政院環保署,2003,水質自然浄化工法彙編,行政院環保署編印。 8. 江漢全,1996,水質分析,三民書局。 9. 邱文彥,2001,人工濕地應用規劃與法治課題。台灣濕地4(23)。 10. 邱錦和,2004,雙連埤生態浮島技術應用,台灣濕地49:12-15。 11. 林信輝、張俊彥,景觀生態與植生工程規劃設計,明文書局。 12. 林春吉,2005,台灣的水生與濕地植物,綠世界出版社。 13. 莊作權,1997,土壤肥料,三民書局。 14. 洪嘉謨,1994,行政院農業委員會畜產試驗所,畜產專訊第九期。 15. 歐文生、林憲德、荊樹人,2006,景觀化人工溼地浄化校園污水效益與公共衛生之研究。中華民國建築協會「建築學報」,(56):183-202。 16. 歐陽嶠輝,1991,下水道工程學,長松文化公司。 17. 蘇清泉,1997,行政院農業委員會畜產試驗所,畜產專訊第二十二期,乳牛榨乳室廢水處理模式探討。 18. 蕭蘊華、傅崇德、許鼎居譯,1995,環境工程化學,Sawyer, C. N. McCarty, P. L. and Parkin G. F.原著,台北:美商麥格羅希爾國際股份有限公司,第四版下冊。 19. 龍沙平,2000,行政院農業委員會畜產試驗所,畜產專訊第三十五期,台灣乳牛場環保設施技術之發展。 20. 李蕙宇,2001,生態園之水棲生物棲地營造。台灣大學園藝學研究所碩士論文。 21. 李黃允,2001,以二階段人工溼地去除生活污水中之營養鹽。中山大學環境工程研究所碩士論文。 22. 高瑋蓮,2008,利用水生植物改善金門地區水質之最佳策略。成功大學環境工程學系研究所碩士論文。 23. 高志明,2005,以人工溼地處理畜牧廢水及畜牧污泥堆肥之研究。中山大學環境工程研究所碩士論文。 24. 陳柏州,2003,以人工溼地淨化水質。高雄第一科技大學環境與安全工程所碩士論文。 25. 陳翠環,2004,草體在人工溼地漫地流場中對污染物去除效果之探討。成功大學環境工程學系研究所碩士論文。 26. 孫明德,2008,景觀生態分析應用於集水區保育治理之研究。中興大學水土保持學系,博士論文。 27. 張豐智,1995,濕式滯留池對觀光農場非點源污染控制效果之研究。成功大學環境工程學系研究所碩士論文。 28. 劉格瑋,2008,由魚類棲地需求探討生態水池規劃研究。台灣大學生物環境系統工程學研究所碩士論文。 29. 蔡厚男,2001,生態水池DIY推廣手冊,財團法人七星農業發展基金會。 30. 闕乃羚,2006,串連式溼地系統淨化效率現地試驗之研究。台北科技大學環境規劃與管理研究所碩士論文。 31. 顏宛珍,2006,以人工溼地處理校園化糞池出流水之研究。台灣科技大學化學工程系碩士論文。 32. Al-Omari,A.and M.Fayyed,2003.“Treatment of Domestic Wastewater by Subsurface Flow Constructed Wetlands in Jordon”Desalination,Vol.155,NO.1,pp.27-39 33. Dialynas,G,N.kefalakis,M Dialynas and A.Angelakis,“Performance of an Innovative FWS Constructed Wetland in Crete,Greece”,Water Science and Technology,Vol,46,NO.4-5,PP335-360(2002) 34. France ,R.L.,2002.Wetland design:Principle of practices for landscape architects and land use planner,New York-Lonton:W.W.Norton. 35. Hammer,D.A,1997.Creating Freshwater Wetlands.Boca Raton,FL:Lewis Publishers. 36. USEPA,2000.Constructed Wetlands Treatment of Municipal Wastewater-Manual 37. 中央氣象局,http://www.cwb.gov.tw/V6/index.htm。 38. 行政院環境保護署網站,http://www.epa.gov.tw/。 39. 教育部自然生態學習網:http://nature.edu.tw/resourcecategories/displayarticle/34 40. 行政院農業委員會畜牧處網站,http:/www.coa.gov.tw/view.php﹖catid=6026
摘要: 摘要 為了解三段式畜牧處理廢水之點源污染,再進入人工溼地自然系統處理淨化的可行性;本研究自2008年12月起至2009年8月,選擇苗栗縣山區一處畜牧場,進行水質樣品收集,利用水土保持設施如:滯洪沉砂池(A、B區)、農塘的大型淨化池(C區)、礫石草溝(D區),以不同面積與水生植物種類進行豪雨(單日降雨130mm以上)、大雨(單日降雨50-130mm)及小雨(單日降雨50mm以下)三種雨量,各採兩次的水體資料,以循環系統方式,作自然淨化動作。觀察養牛廢水在放流之前,利用自然機制淨化處理後,除污效率及污染遞移情形。再利用河川分類指數(river pollution index ,RPI),評定分類不同降雨狀況所淋洗釋出之污染物,流入各試驗池的污染程度。其結果與畜牧放流水標準作比對,確認是否達到排放標準。 研究結果顯示,自然淨化處理後廢水中污染物有明顯降低。除污效率(原水至A區大沉砂池):1、生化需氧量去除效率上,大雨最好達93.42%,豪雨最差只有47.92%。2、在總磷、氨氮、懸浮固體去除效率上,小雨的最好達80.59%、98.35%、99.03%,大雨的30.24%、1.55%、豪雨的69.61%最差。3、在溶氧上升效率中,以小雨上升率最高達77.27%,大雨上升率最低只有33.33%。 B區小沉砂池、C區農塘(大型淨化池)到D區的慢濾礫石草溝,污染狀況受到雨量大小而有所影響,在小雨期間氨氮與懸浮固體因水量不足,自浄系統機制無法啟動,污染物累積結果,指數有上升趨勢,建議小雨以下或乾旱期間自浄系統只開放至A區大沉砂池,即進行排放,避免污染物質累積造成二次污染。大雨期間整體除污效率屬正常運作,自浄循環系統建議全面開放。豪雨期間(如超大降雨量或颱風),建議自浄系統全面關閉。 利用河川污染分類指數(RPI)值分類結果顯示污染指數呈趨緩現象,顯示循環系統並無造成浄化水池污染加重情形。畜牧排放標準中生化需氧量及懸浮固體比較方面,檢驗值有70.6%至99%的下降率。 關鍵字:水土保持設施、雨量、污染去除效率、遞移
Abstract In order to figure out the feasibility to re-clarify the “Tripartite Composition Livestock Wastewater Treatment Point Pollution” by artificial wetland system, the research had conducted the whole process through a period of time, since December 2008 to August 2009. The water was sampled from a specific ranch which is located in Miaoli county and then clarifying water circularly and systematically by using soil and water conservation facilities, such as Flood Detention Pond ( area A and B), Farming Pond(area C), Gravel and Grassed Waterways(area D). These areas differ from their various dimensions and aquatic plants grow up rely on them. Water samples in each of area were collected under different climatic conditions, namely torrential rain (150mm and above per day), heavy rain (50-130mm per day), and light rain (50mm and below per day). Point contaminant removing efficiency was calculated for each operation of natural clarifying mechanism. RPI (River Pollution Index) were also calculated for the waste water in order to evaluate the degree of pollution. The results were compared with the livestock wastewater release standard. Results of this research indicated that, livestock waste contaminant in the water was apparently decreased after going through the natural clarifying system. First, for BOD, system achieved the best performance (93.42%) during the heavy rain period, but performed worst during a torrential rain. Second, the removing efficiency of total phosphorous, ammonia nitrogen, and suspended solids, performed best under light rain ( 80.59%, 98.35%, and 99.03%), and worst under heavy and torrential rain (30.24%, 1.55%, and 69.61%). For DO, the increase rate was highest during the light rain (77.27%), and lowest during the heavy rain (33.33%). Contamination of water from area B to area D was affected by the extent of rainfall. During the light rain period, natural clarifying mechanism was not activated owing to insufficient rainfall. RPI tended to rise because contaminant such as ammonia nitrogen and suspended solids was not diluted and gradually accumulated in water. Suggestion from The research suggested that, the natural clarifying system should be opened only limited to area A during the light rain period. By doing so, contaminant accumulation and double-contaminated situation would avoid. Natural clarifying mechanism usually works well during the heavy rainfall period. It is encouraged to open the whole clarifying system. In contrast, natural clarifying system is strongly urged to be closed during a torrential rain (especially with extraordinary rainfall or typhoon). Statistics based on RPI classification indicated that contaminated index went down. We can conclude that natural clarifying mechanism does not burden or deteriorate the existing contamination. Related data of biological oxygen demand and suspended solids respecting to livestock wastewater release standard showed 70.6% and 99% rate of descent respectly. Key word: Soil and water conservation facilities, Rainfall, Point contaminant removing efficiency, Deliver rate.
URI: http://hdl.handle.net/11455/34850
其他識別: U0005-2901201012221800
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.