Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34856
標題: 植生緩衝帶配置區位優選及配置效益評估之研究
Priority Determination and Benefits of Vegetated Buffer Strip Placement
作者: 張嘉琪
Chang, Chia-Chi
關鍵字: Depression storage
窪蓄區位
Environmental sensitive area
Vegetated buffer strip
環境敏感區位
植生緩衝帶
出版社: 水土保持學系所
引用: 1. 方金鳳(1987),「土地使用績效管制之研究-以山坡地開發為例」,國立中興大學都市計畫研究所碩士論文。 2. 王如意、易任(1999),「應用水文學」上冊,國立編譯館出版。 3. 行政院經濟建設委員會(1988),「台灣地區環境敏感地區管理制度之研究」,行政院經濟建設委員會都市及住宅發展處。 4. 余志偉、莊茹淯、趙亮謝、謝文章(2004),「環境影響評估、環境敏感地與高自然災害潛勢地區之介紹」,國立台北大學自然資源與環境管理研究所風險分析期中報告,pp.1-10。 5. 呂建華(1991),「應用遙測與地理資訊系統推求SCS曲線值」,中華水土保持學報,22(2):89-98。 6. 宋仁良(2005),「基隆河上游集水區地表特性與降雨逕流之關係研究」,中國文化大學地學研究所碩士論文。 7. 李光敦(2002),「水文學」,五南圖書出版股份有限公司出版。 8. 林文賜(2002),「集水區空間資訊萃取及坡面泥砂產量推估之研究」,國立中興大學水土保持學系博士論文。 9. 林昭遠、鄭旭涵、林家榮(2008),「集水區環境敏感區位劃定系統在鄉村區土地適宜性評估之應用」,水土保持學報,40(4): 417-438。 10. 林維侃(1993),「應用地理資訊系統及HEC-1水文模式探討台灣中部上游集水區降雨逕流之關係」,國立中興大學水土保持學系碩士論文。 11. 邱湞瑋(2006),「勢能蒸發散計算方法應用於中海拔地區之比較」,國立臺灣大學森林環境暨資源學研究所碩士論文。 12. 施鈞程(2003),「台灣森林集水區的蒸發散量推估」,國立中興大學水土保持學系碩士論文。 13. 張石角(1980),「都市山坡地利用潛力調查與製圖-方法論與實例」,中華水土保持學報,11(1):22-34。 14. 陳子淳(1985),「區域性運輸規劃與環境分析方法之研究-以北部區域第二高速公路為例」,國立中興大學都市計畫研究所碩士論文。 15. 陳文福、鄭新興(1997),「遙測與GIS應用於集水區大型坡地開發之變遷分析」,水土保持學報,29(1):41-59。 16. 陳正祥(1957),「氣候的分類與分區」,林業叢刊(7),台北:台大農學院實驗林。 17. 陳朝圳(1999),「南仁山森林生態系植生綠度之季節性變化」,中華林學季刊,32(1):53-66。 18. 陳鈺雯(2005),「逕流曲線值應用於農業非點源污染模式之探討」,國立中興大學水土保持學系碩士論文。 19. 黃大任(1990),「台灣皿蒸發量空間分佈之研究以PENMAN法及THORNTHWAITE法作比較」,國立臺灣大學地理研究所碩士論文。 20. 黃振原(2005),「坡地農村環境敏感區位分析-以華山地區為例」,國立中興大學水土保持學系碩士論文。 21. 黃書禮(1987),「應用生態規劃方法於土地使用規劃之研究」,行政院國家科學委員會專題研究報告。 22. 黃國楨、王韻皓、焦國模(1996),「植生指標SPOT衛星影像之研究」,台灣林業,22(1):45-52。 23. 黃麗津(2003),「應用地理資訊系統與數值地形模型於坡地敏感區劃設之研究-以花蓮清水溪流域為例」,國立台灣師範大學地理研究所碩士論文。 24. 經濟部水利署網站,http://www.wra.gov.tw/ 25. 廖進雄(1985),「環境敏感地使用規劃與管制之研究」,國立中興大學都市計畫研究所碩士論文。 26. 褚思穎(2007),「逕流係數與SCS曲線值關係之研究」,國立中興大學水土保持學系碩士論文。 27. 劉佳芳(2002),「阿里山山葵園環境敏感區位分析及收回效益之研究」,國立中興大學水土保持學系碩士論文。 28. 歐信宏(2000),「HEC-HMS降雨-逕流模式應用之研究」,國立成功大學水利及海洋工程學系碩士論文。 29. 盧惠生(1976),「鳳山、集集、新化坡地果園流失小區逕流指數之估測」,國立中興大學水土保持學研究所碩士論文。 30. 盧惠生(1985),「坡地不同作物水土保持方法之逕流曲線指數」,中華水土保持學報,16(2):36-47。 31. 賴裕森(1999),「以SCS曲線值法推求翡翠水庫集水區逕流係數之研究」,國立中興大學水土保持學系碩士論文。 32. 謝漢欽(1998),「SPOT綠度與森林生育地因子於台灣杉材積推估之探討」,台灣林業科學,13(3):175-188。 33. 謝漢欽、鄭祈全(1995),「福山地區SPOT多期影像植生綠度分析」,林業試驗所研究報告季刊,10(1):105-120。 34. 池谷浩、水山高久(1982),「土石流の流動と堆積に關する研究」,土研報,157:88-153。 35. Akan, A.O. and E.N. Antoun (1994), “Runoff detention for flood volume of erosion control,” Journal of Irrigation and Drainage Engineering, 120(1): 168-178. 36. Belda, F., and J. Melia (2000), “Relationships between climatic parameters and forest vegetation: application to burned area in Alicante (Spain),” Forest Ecology and Management, 135: 195-204. 37. Burgan, R.E. and R.A. Hartford (1993), “Monitoring vegetation greenness with satellite data,” USDA Forest Service Intermountain Research Station, General Technical Report. INT-297 38. Carter, D.B. and J.R. Mather. (1966),“Climatic classification for environmental biology,” C.W. Thornthwaite Associates Laboratory of Climatology Publications in Climatology, 19(4): 305-395. 39. Chou, T.Y., W.T. Lin, C.Y. Lin, W.C. Chou and P.H. Huang (2004), “Application of the PROMETHEE technique to determine depression outlet location and flow direction in DEM.” Journal of Hydrology, 287: 49-61. 40. Dillaha, T.A. (1989), “Water quality impacts of vegetative filter strips.” Paper No. 89-2043. American Society of Agricultural Engineers, St. Joseph, MI, 14 pp. 41. Dillaha, T.A., J.H. Sherrard, and J.D. Lee, (1986), “Long-term effectiveness and maintenance of vegetative filter strips.” Bulletin I-VIII, Water Resources Research Center, Virginia Polytechnic Institute and State University, Blacksburg, VA, 39 pp. 42. Doyle, R.C., G.C. Stanton, and D. C. Wolf, (1977), “Effectiveness of forest and grass buffer strips in improving the water quality of manure polluted runoff. ” Paper No.77-2501. American Society of Agricultural Engineers, St. Joseph, MI , 11pp. 43. Eagles, P. F. J. (1981), “Environmentally sensitive area planning in Ontraio,” Canada Journal of American Planning Association, pp.313-323. 44. Edwards, W.M., L.K. Owens, and R.K. White, (1983), “Managing runoff from a small paved beef feedlot.” Journal of Environmental Quality, 12: 281-286. 45. Foster , G.R., L.J. Lane, J.D. Nowlin, J.M. Laflen, and R.A. Young. (1981), “Estimating erosion and sediment yield on field-sized areas.” Trans. ASAE 24: 1253-1262. 46. Hamon , W.R. (1961), “Estimating potential evapotranspiration. ” Journal of Hydraulics Division , Division of the American Society of Civil Engineers, 87(HY3): pp.107-120。 47. Jensen, M. E., R. D. Burman, and R. G. Allen (eds.) (1990), “Evapotranspiration and irrigation water requirements.” ASCE, manuals and reports on engineering practice No.70. New York. 48. Jenson, S.K. and J.O. Domingue (1988), “Extracting topographic structure from digital elevation data for geographic information system analysis. ” Photogrammetric Engineering and Remote Sensing, 54(11): 1593–1600. 49. Lane, L.J. (1982), “Development of a procedure to estimate runoff and sediment transport in ephemeral streams. ” In recent developments in the explanation and prediction of erosion and sediment yield. pp.275-282. Proc. Exeter Symp. IAHS Publ. 137. 50. Lin, W.T., W.C. Chou, C.Y. Lin, P.H. Huang and J.S Tsai (2008),“ WinBasin: Using improved algorithms and the GIS technique for automated watershed modeling analysis from digital elevation models. ” International Journal of Geographical Information, 22(1): 47-69. 51. Liu, H. and L. Wang. (2008), “Mapping detention basins and deriving their spatial attributes from airborne LiDAR data for hydrological applications,” Hydrological Processes, 22: 2358–2369. 52. Magette, W.L., Brinsfield, R.B., Palmer, R.E., and Wood, J.D. (1989), “Nutrient and sediment removal by vegetated filter strips.” Transactions of American Society of Agricultural Engineers 32: 663-667. 53. Mark, D.M. (1988), “Network models in geomorphology”, in Modelling Geomorphological Systems, ed. M.G. Anderson, John Wiley. 54. Martz, L.W. and J. Garbrecht (1998), “The treatment of flat areas and depressions in automated drainage analysis of raster digital elevation models”, Hydrological Processes, 12: 843-855. 55. Martz, L.W. and J. Garbrecht (1999), “An outlet breaching algorithm for the treatment of closed depressions in a raster DEM”, Computer & Geosciences, 25: 835-844. 56. Mitchell, J.K. and Jr. B. A. Jones, (1976), “Micro-relief surface depression storage: analysis of models to describe the depth-storage function,” Journal of the American Water Resources Association, 12(6): 1205-1222. 57. Mitchell, J.K. and Jr. B. A. Jones, (1978), “Micro-relief surface depression storage: changes during rainfall events and their application to rainfall-runoff models,” Journal of the American Water Resources Association, 14(4): 777 - 802. 58. O’Callaghan, J.F. and D.M. Mark (1984), “The extraction of drainage networks from digital elevation data”, Computer Graphics and Image Processing, 28: 323-344. 59. Penman, H. L. (1963), “Vegetation and hydrology.” Technical Communication No.53. Commonwealth Bureau of Soils, Harpenden, England. 60. Richards, P.L. and A. Brenner, (2004), “Delineating source areas for runoff in depressional landscapes; implications for hydrologic modeling. ” Journal of Great Lakes Research, 30: 9-21. 61. Richards, P.L. and R. Grimm, (2005), “Depression storage in land uses common to the fingerlakes region”, 1st Annual Conference of the Finger Lakes Institute, Nov. 10, 2005; Geneva NY. 62. Smith, R.E., and J.R. Williams, (1980), Simulation of the surface hydrology. In Knisel, W., ed., CREAMS , A Field Scale Model for Chemicals , Runoff , and Erosion from Agricultural Management System. U.S. Dep. Agric. Conserv. Res. Rep. 26, 1(2): 15. 63. Soil Conservation Service. (1968), “National engineering handbook. ” U.S. Department of Agriculture. 64. Thompson, D.B., T. L. Loudon, and J. B. Gerrish, (1978), “Winter and spring runoff from manure application plots. ” Paper NO.78-2032. American Society of Agricultural Engineers, St. Joseph, MI,19 pp. 65. Thornthwaite, C.W. and J.R. Mather (1955), “The water balance. Publications in climatology.” Drexel Institute of Technology Laboratory of Climatology, 8(1): 1-76. 66. Thornthwaite, C.W. (1948), “An approach toward a rational classification of climate.” Geographical Review, 38(1): 55-94. 67. Thornthwaite, C.W. (1931), “The climates of North America according to a new classification.” Geographical Review, 21: 633-655. 68. Tuhkanen, S. (1980), “Climatic parameters and indices in plant geography. ” Almqvist and Wiksell International, Sweden, 110pp. 69. Wischmeier, W.H. and D.D. Smith. (1978), “Predicting rainfall erosion losses, agricultural handbook No. 537.”Agricultural Research Service, United States Department of Agriculture. 70. Young, R.A , C.A. Onstad , D.D Bosch, and W.P Anderson(1987), “Agricultural non-point-source pollution model. A watershed analysis tool.” U.S. Department of Agriculture, Conservation Research Report 35.
摘要: 植生緩衝帶具緩衝污染物與攔阻泥砂等功效,為坡地保育最佳處理措施(Best Management Practices, BMPs)之一;惟緩衝帶配置區位會影響耕地面積,用地取得不易。因此,如何在坡地農業規劃上,劃定緩衝綠帶,作為耕地保育及綠美化用地極為重要。 本研究回顧水土保持相關法令,萃取需加強保育之環境敏感區內植生綠覆較差之點位,供依法需配置植生緩衝帶之優先區位;另既有農塘或潛在窪蓄等地因有涵養水源、滯洪沉砂、供給農業用水、營造生態環境、提供景觀休閒等多功能之誘因,可鼓勵農民於農塘周遭配置適宜之綠帶,為植生緩衝帶另一優選區位。最後以農業非點源污染模式結合地理資訊系統,檢討優選區位之植生緩衝帶配置效益。 油田村陡峭及濱水地區需要植生復育之面積約330公頃(陡峭區位299公頃,濱水區31公頃)。陡峭區位植生復育處理係直接萃取植生覆蓋因子(C)大於0.001之區位模擬植生造林(C = 0.001);濱水區以10公尺寬度加以探討,針對需改善處(C > 0.1)配置植生緩衝帶(C = 0.1)加以模擬。依陡峭、濱水、以及陡峭與濱水區位需植生復育處理者,利用AGNPS模擬三種處理之集水區泥砂產量、泥砂含氮量、以及泥砂含磷量之單位面積改善效益。環境敏感與窪蓄區位之緩衝帶配置可相輔相成,在功能上若能互為緩衝更可增強緩衝效能。扣除環境敏感區已配置緩衝帶之窪蓄區位,以集水面積及窪蓄量體為篩選條件,可優選集水區需配置植生緩衝帶之窪蓄區位。
URI: http://hdl.handle.net/11455/34856
其他識別: U0005-3107200915272800
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.