Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/34922
標題: Evaluation of carbon stocks in terrestrial ecosystems
陸域生態系碳存量評估之研究
作者: 吳逸崟
Wu, Yi-Yin
關鍵字: Carbon stocks
碳存量
greenery deterioration index
Forest-DNDC
綠劣指數
Forest-DNDC
出版社: 水土保持學系所
引用: 一、中文部分 (一)圖書 1.交通部中央氣象局(2009),「臺灣氣候變化統計報告1897-2008」,交通部中央氣象局。 2.內政部營建署雪霸國家公園管理處(2009),「雪山地區高山生態系整合調查」成果報告書。 3.劉棠瑞、蘇鴻傑(1983),「森林植物生態學」,台灣商務印書館,台北,台灣,18-33頁。 4.蘇鴻傑(1988),「雪山香柏保護區植群生態之研究」,林務局保育研究系列。 (二)期刊論文 5.王小國、朱波、高美榮、王艷強、鄭循華(2008),「川中丘陵榿柏混交林地土壤CO2釋放與Forest-DNDC模型模擬」,北京林業大學學報,30(2):27-32。 6.朱慧君(2005),「台灣扁柏森林生態系養分存量與枯落物養分流量之研究」,國立東華大學自然資源管理研究所碩士論文。 7.李長生(2001),「生物地球化學的概念與方法」,第四紀研究,21(2):89-99。 8.李國忠、林俊成、陳麗琴(2000),「台灣杉人工林碳吸存潛力其成本效益分析」,台灣林業科學,15:115-123。 9.邵月紅、潘劍君、孫波(2005),「不同森林植被下土壤有機碳的分解特徵及碳庫研究」,水土保持學報,19(3):24-28。 10.金琳、李玉娥、高清竹、劉運通、萬運帆、秦曉波、石鋒(2008),「中國農田管理土壤碳匯估算」,中國農業科學,41(3):734-743。 11.胡海青、郭福濤(2008),「大興安嶺森林火災中主要喬木樹種含碳氣體釋放總量的估算」,應用生態學報,19(9):1884-1890。 12.姜家華、劉興旺(1989),「樹齡與季節對柳杉枯枝落葉及養分含量之影響」,台大實驗林研究報告,3:1-20。 13.陳榮欽(1996),「合歡山區臺灣冷杉林樹齡學之研究」,國立中興大學植物學研究所碩士論文。 14.張凡、李長生、王政(2006),「耕作措施對陝西耕作土壤碳儲量的影響模擬」,第四紀研究,26(6):1021–1028。 15.張朝婷(2005),「台灣地區不同海拔之森林土壤碳及養份庫存的研究」,國立台灣大學森林環境暨資源學系碩士論文。 16.張瑀芳、林世宗、蔡呈奇(2006),「臺灣東北部柳杉人工林土壤有機碳儲量的推估」,台灣林業科學,21(4):383-93。 17.廖大牛(2009),「試算台灣森林碳固定機能」,台灣林業,四月號,26-38。 18.韓冰、王效科、歐陽志雲(2005),「中國農田生態系統土壤碳庫的飽和水平及其固碳潛力」,農村生態環境,21(4):6-11。 (三)網路資源 19.中央氣象局全球資訊網,http://www.cwb.gov.tw/ 20.行政院農業委員會網站,http://www.coa.gov.tw/show_index.php 21.行政院農委會林務局網站,http://www.forest.gov.tw/mp.asp?mp=1 22.行政院農委會水土保持局網站,http://www.swcb.gov.tw/default.asp 23.行政院環境保護署網站,http://www.epa.gov.tw/ 24.法務部全國法規資料庫網站,http://law.moj.gov.tw/index.aspx 二、西文部分 (一)Books 25.Barnes, B.V., D.R. Zak, S.R. Denton, and S.H. Spurr (1998), “Forest Ecology”, 4th ed., John Wiley & Sons Inc, New York. 26.Brady, N.C., and R.R. Weil (2008), “Soil organic matter. In: The Nature and Properties of Soils”, 14th ed., Pearson Education, Inc., NJ. pp. 495-541. 27.Burgan, R.E. and R.A. Hartford (1993), “Monitoring vegetation greenness with satellite data”, USDA Forest Service Intermountain Research Station General Technical Report, INT-297. 28.Intergovernmental Panel on Climate Change (IPCC), (1997), “Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories”, Intergovernmental Panel on Climate Change, Meteorological Office, Bracknell, UK. 29.Intergovernmental Panel on Climate Change (IPCC), (2000), “Special Report on Land Use Land-Use Change and Forestry”, Cambridge University Press, Cambridge, UK. 30.Intergovernmental Panel on Climate Change (IPCC), (2001), “Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change”, Cambridge University Press, Cambridge, UK. 31.Running, S.W. and E.R. Hunt (1993), “Generalization of a forest ecosystem process model for other biomes, Biome-BGC, and an application for global-scale models”, Academic Press, San Diego, pp.141-158. 32.Trumbore, S. E. and M. S. Torn(1997), “Soils and the global carbon cycle”. In: Holland, E. A. (ed.), Soils and Global Change. NATO Advanced Study Institute, in press, pp. 1-34. 33.Tsai, C.C. and Z.S. Chen(2002), “The estimation of total soil carbon stock in Taiwan forest soils”. In: Lin, K.C. and Lin, J.C. (editors). Proceedings of International Symposium on Forest Carbon Sequestration and Monitoring. Taiwan Forestry Research Institute. Taipei, Taiwan ROC, pp. 53-62. (二)Journal Articles 34.Almendros, G., F. J. Gonzalez-Vila, and F. Martin (1990), “Fire-induced transformation of soil organic matter from an oak forest: an experimental approach to the effects of fire on humic substances”, Soil Sci, 149:158-68. 35.Batjes, N.L(1996), “Total carbon and nitrogen in the soils of the world”, European Journal of Soil Science,47: 151-163. 36.Benemann, J.R (1992), “The use of iron and other trace element fertilizers in mitigating global warming”,J. Plant Nutr,15:2277-2313. 37.Black, T.A., and J.W. Harden (1995), “Effect of timber harvest on soil carbon storage at Blodgett Experimental Forest”, California. Can. J. For. Res., 25:1385-1396. 38.Bonde, T., B.T. Christensen, and C.C. Cerri (1992), “Dynamics of organic matter as reflected by natural 13C abundance in the particle size fractions of forested and cultivated Oxisols”, Soil Biol. Biochem, 24:275-277. 39.Campbell, C.A., K.E. Bowren, M. Schnitzer, R.P. Townley, and L. Smith (1991) “Effect of crop rotations and fertilization on soil organic matter and some biochemical properties of a thick black chernozem”, Canadian Journal of Soil Science, 71:377-387. 40.Chen, Z.S. and Z.Y. Hseu (1997), “Total organic carbon pool in soils of Taiwan”, Proc Natl Sci Council ROC Part B Life Sci, 21:120-7. 41.Criquet, S (2002), “Measurement and characterization of cellulase activity in sclerophyllous forest litter”, J. Microbiol. Methods , 50:165-173. 42.DeFries, R.S., R.A. Houghton, M.C. Hansen, C.B. Field, D. Skole, and J. Townsend (2002), “Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 1990s”, PNAS, 99:14256–14261. 43.Durham, N.H. and S.C. Charleston (2002), “User’s Guide for the Wetland-DNDC Model”. 44.Eswaran, H., E. van den Berg, and P. Reich (1993), “Organic carbon in soils of the world”, Soil Sci. Soc. Am. J, 57: 192-194. 45.Falkowski, P., R. J. Scholes, E. Boyle, J. Canadell, D. Canfield, J. Elser, N. Gruber, K. Hibbard, P. Hogberg, S. Linder, F. T. Mackenzie, B. Moore III, T. Pedersen, Y. Rosenthal, S.Seitzinger, V. Smetacek, and W. Steffen (2000), “The Global Carbon Cycle: A Test of Our Knowledge of Earth as a System”, Science, 290: 291-296. 46.Farahbakhshazad N., L.D. Dana, C.S. Li, B.J. Dan, and S. William (2007), “Modeling biogeochemical impacts of alternative management practices for a row-crop field in Iowa. Agriculture”, Ecosystems and Environment, 3057:1-19. 47.Fensholt, R., I. Sandholt, and M. Schultz Rasmussen (2004), “Evaluation of MODIS LAI, Fapar and the relation between fAPAR and NDVI in a semi-arid environment using in situ measurements”, Remote Sensing of Environment, 91(3-4):490-507. 48.Forley, J.A., I.C. Prentice, N. Ramankutty, S. Levis, D. Pollard, S. Sitch, and A. Haxeltine (1996), “An integrated biosphere model of land surface progresses, terrestrial carbon balance, and vegetation dynamics”, Global Biogeochemical Cycles, 10 (4) : 603-628. 49.Frolking, S.E., A.R. Mosier, D.S Ojima, C. Li, W.J. Parton, C.S. Potter, E. Priesack, R. Stenger, C. Haberbosch, P. Dorsch, H. Flessa, and K.A. Smith (1998), “Comparison of N2O emissions from soils at three temperate agricultural sites: simulations of year-round measurements by four models”, Nutrient Cycling in Agroecosystems, 52: 77-105. 50.Haxeltine, A. and I.C. Prentice (1996), “BIOME3:an equilibrium terrestrial biosphere model based on ecophysiological constraints, resource availability, and competition among plant functional types”, Global Biogeochemical Cycles, 10:693-709. 51.Houghton, R.A., J.E. Hobbie, J.M. Melillo, B. Moore, B.J. Peterson, G.R. Shave, and G.M. Woodwell (1983), “Changes in the carbon content of the terrestrial biota and soils between 1860 and 1990: a release of CO2 to the atmosphere”, Ecol. Monogr, 53(3):235-262. 52.Houghton, R.A. (1999), “The annual net flux of C to the atmosphere from changes in land use 1850–1990”, Tellus, 51B:298-313. 53.Kimble, J.M., L.S. Heath, R.A. Birdsey, and R. Lal (2003), “The potential of U.S. forest soils to sequester carbon and mitigate the greenhouse effect”, Forest Science, 49(4):644-645. 54.Koizumi, H., K. Takeshi, M. Shigeru, O. Toshiyuki, N. Toshie, M. Wenhong, T. Hideshige, S. Nishimura, and K. Kazuhiko (2001), “Effect of free-air CO2 enrichment (FACE) on CO2 exchange at the flood-water surface in a rice paddy field”, New Phytologist, 150:231-239. 55.Kurbatova, J., C. Li, A. Varlagin, X. Xiao, and N. Vygodskaya (2008), “Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in Russia”, Biogeosciences, 5:969-980. 56.Lal, R. (2001), “The potential of soil carbon sequestration in forest ecosystem to mitigate the greenhouse effect”. In: Lal, R. (ed.), Soil Carbon Sequestration and the Greenhouse Effect. Soil Science Society of America, Special Publication 57:137-154. 57.Lal, R. (2004) “Soil carbon sequestration to mitigate climate change”, Geoderma, 123:1-22. 58.Levy, P.E., A.D. Friend, A. White, and M.G.R. Cannell (2004) “The influence of land use change on global-scale fluxes of carbon from terrestrial ecosystems”, Climatic Change, 67:185–209. 59.Li, H., Y. Ma, T.M. Aide, and W. Liu (2008) “Past, present and future land-use in Xishuangbanna, China and the implications for carbon dynamics”, Forest Ecology and Management, 255:16-24. 60.Li, C.S., F. Steve, and F.A. Tod (1992), “A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity”, Journal of Geophysical Research, 97:9759-9776. 61.Li, C.S., A. John, S. Florian, B.B. Klaus, and P. Hans (2000), “A process-oriented model of N2O and NO emissions from forest soils: 1, Model development”, J. Geophys. Res, 105:4369-4384. 62.Liebig, M.A., J.A. Morgan, J.D. Reeder, B.H. Ellert, H.T. Gollany, and G.E. Schuman (2005) “Greenhouse gas contributions and mitigation potential of agricultural practices in northwestern USA and western Canada”, Soil & Tillage Research, 83:25-52. 63.Lu, X. and G. Cheng (2009), “Climate change effects on soil carbon dynamics and greenhouse gas emissions in Abies fabri forest of subalpine, southwest China”, Soil Biology & Biochemistry, 41:1015-1021. 64.Melillo, J.M., A.D. McGuire, D.W. Kicklighter, and M.Ⅲ Berrien (1993) “Global climate change and terrestrial net primary production” Nature, 363:234-240. 65.Miehle, P., S.J. Livesley, P.M. Feikema, C. Li, and S.K. Arndt (2006) “Assessing productivity and carbon sequestration capacity of Eucalyptus globulus plantations using the process model Forest-DNDC: Calibration and validation”, Ecological Modelling, 192:83-94. 66.Naganawa, T., K. Kyuma, Y. Yamatoto, P. Yokoi, and K. Tatasuyama (1989) “Measurement of soil respiration in the field: influence of temperature, moisture level, and application of sewage sludge compost and agri-chemicals”, Soil Science & Plant Nutrition, 35: 509-516. 67.Olson, J.S. (1981), “Carbon balance in relation to fire regimes”, Proceedings of the Conference Fire Regimes and Ecosystem Properties, Honolulu, Hawaii:327-378 68.Parton, W.J., J.B.W. Stewart, and C.V. Cole (1988), “Dynamics of C, N, S, and P in grassland soils:A model”, Biogeochemistry, 5:109-131. 69.Paustian, K., O. Andren, H.H Janzen, R. La1, P. Smith, G. Tian, H. Tiessen, M.V. Noordwijk, and P.L. Woomer (1997) “Agricultural soils as a sink to mitigate CO2 emissions”, Soil Use and Management, 13:230-244. 70.Post, W.M., W.R. Emanuel, P.J. Zinke, and A.G. Stangenberger (1982) “Soil carbon pools and world life zones”, Nature, 298 (8) :156-159. 71.Potter, C.S., J.T. Randerson, and C.B. Field (1993), “Terrestrial ecosystem production:A process model based on global satellite and surface data”, Global Biogeochemical Cycle, 7:811-841. 72.Prasad, V.K., T. Rajagopal, Y. Kant, K.V.S. Badarinath, (2000) “Quantification of carbon fluxes in tropical deciduous forests using satellite data”, Advances in Space Research, 26(7):1101-1104. 73.Prasad, V.K., Y. Kant, and K.V.S. Badarinath (2002) “Land use changes and modeling carbon fluxes from satellite data”, Advances in Space Research, 30(11):2511-2516. 74.Prichard, S.J., D.L. Peterson, and R.D. Hammer (2000), “Carbon Distribution in Subalpine Forests and Meadows”, Soil Sci. Soc. Am. J., 64:1834-1845. 75.Prince, S.D. and S.N. Goward (1995), “Global primary production: A remote sensing approach”, Journal of Biogeography, 22:815-835. 76.Raich, J.W. and C.S. Potter (1995), “Global patterns of carbon dioxide emissions from soils”, Global Biogeochemical Cycles, 9:23-36. 77.Rogers, H.M. (2002), “Litterfall, decomposition and nutrient release in a lowland tropical rain forest, morobe province, Papua New Guinea”, Journal of Tropical Ecology, 18:449-456. 78.Schimel, D., J. House, K. Hibbard, P. Bousquet, and P. Peylinmm, (2001), “Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems”, Nature, 414:169–17. 79.Scott, N. A., C. V. Cole, E. T. Elliott, and S. A. Huffman (1996), “Soil textural control on decomposition and soil organic matter dynamics”, Soil Sci. Soc. Am. J, 60:1102-1109. 80.Seiler, W. and P.J. Crutzen (1980), “Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning”, Climate Change, 2:207-248 81.Sellers, P.J., D.A. Randall, and G.J. Collatz (1996), “A revised land surface parameterization (SiB2) for atmospheric GCMS. Part 1:Model formulation”, Journal of Climate, 9:676-705. 82.Sitch, S., B. Smith, I.C. Prentice, A. Arneth, A. Bondeau, W. Cramer, J. Kaplan, S. Levis, W. Lucht, M. Sykes, K. Thonicke, and S. Venevski (2003), “Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ Dynamic Vegetation Model”, Global Change Biology, 9:161-185. 83.Six, J., R.T. Conant, E.A. Paul, and K. Paustian (2002) “Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils”, Plant and Soil, 241:155-176. 84.Smith, P., J.U. Smith, D.S. Powlson, W.B. McGill, J.R.M. Arah, O.C. Chertov, K. Coleman , U. Franko, S. Frolking , D.S. Jenkinson , L.S. Jensen , R.H. Kelly , H. Klein-Gunnewiek , A.S Komarov , C. Li , J.A.E. Molina , T. Mueller , W.J. Parton , J.H.M. Thornley , and A.P. Whitmore (1997), “A comparison of the performance of nine soil organic matter models using datasets from seven long-term experients”, Geoderma, 81:153-225. 85.Stumm, W. and J.J Morgan (1981), “Aquatic Chemistry”, An Introduction Emphasizing Chemical Equilibria in Natural Waters, 2nd ed., John Wiley, New York, pp.418-503. 86.Thornthwaite, C.W. (1931) “The climates of North America according to a new classification”, Geographical Review, 21:633-655. 87.Thornthwaite, C.W. (1948) “An approach toward a rational classification of climate”, Geographical Review, 38(1):55-94. 88.Thornthwaite, C.W. and J.R. Mather (1955), “The water balance. Publications in climatology”, Drexel Institute of Technology Laboratory of Climatology, 8(1):1-76. 89.Tomlinson, R.W., and R.M. Milne (2006), “Soil carbon stocks and land cover in Northern Ireland from 1939 to 2000”, Applied Geography, 26:18-39. 90.Tsai, C.C., T.E. Hu, K.C. Lin, and Z.S. Chen (2009), “Estimation of soil organic carbon stocks in plantation forest soils of northern Taiwan”, Taiwan Journal of Forest Science, 24(2):103-115. 91.Upadhyay, T. P., P.L. Sankhayan, and B. Solberg (2005), “A review of carbon sequestration dynamics in the Himalayan region as a function of land-use change and forest/soil degradation with special reference to Nepal”, Agri. Ecosys. Environ, 105:449-465. 92.West, T.O. and J. Six (2007) “Considering the influence of sequestration duration and carbon saturation on estimates of soil carbon capacity”, Climatic Change, 80:25-41. 93.Woodward, F.I. and M.R. Lomas (2004), “Vegetation dynamics-simulating responses to climatic change”, Biological Reviews, 79(3):643-670. (三)Electronic Resources 94.Earth Policy Institute (EPI) Website, http://www.earth-policy.org/ 95.International Energy Agency (IEA) Website, http://www.iea.org/
摘要: 全球溫室氣體增加,暖化現象嚴重,國際間紛紛提出減緩方案,成立跨國組織,制訂國際公約。各類方案中除了發展綠色能源,提高能源利用率,降低碳源之外;藉由碳匯方式減少大氣碳含量,因成本低,效益高,操作容易,尤以森林碳匯之研究已漸受重視。本研究探討不同時期台灣碳存量之變化,分析土地利用類型對碳存量之影響;另以衛星影像推估綠劣指數,間接推算碳存量之可行性。因森林生態系於碳循環扮演重要角色,選用Forest-DNDC進行模擬,俾了解森林碳通量之變化。 經採用兩期(1995年、2008年)國土利用調查圖資,萃出6類植群,參照氣候變遷跨國組織(Intergovernmental Panel on Climate Change, IPCC)估算台灣之植物碳存量變化,發現1995年至2008年間共增加9,355,116噸。台灣主要土地利用類別之碳存量,其高低依序分別為林班地、原住民保留地、山坡地以及都市計畫區,顯示土地利用類別與碳存量關係密切。選用12處農村社區作為測試樣區,藉由SPOT衛星影像推估各樣區之綠劣指數,與碳存量進行相關分析,結果呈顯著負相關,綠劣指數可做為碳存量優劣之評估指標。 另由雪山地區之圈谷及黑森林樣區,以2008年現況資料進行Forest-DNDC模擬,發現土壤有機碳含量易受枯落物影響;模擬2008〜2017年間之土壤有機碳含量與淨生態系碳交換量,兩者皆呈下降趨勢,且其對時間軸之斜率變化有趨緩現象。另以溫度上升0.01℃/yr為情境模擬,其與現況溫度之模擬值相較,淨生態系碳交換量之差異幅度均較土壤有機碳為大;淨生態系碳交換量由初始之0.02%逐年提升至0.98%。溫度及pH為影響土壤碳通量之主因之一,模式敏感度分析結果,溫度對碳通量之影響較pH為大。
The increase of greenhouse gas emission has led to serious effects of global warming. Inter-countries have promoted the mitigation strategies and established intergovernmental panels to formulate international covenant. In addition to the development of green energies would enhance utilization efficiency of energies and decrease carbon source, reduction of atmospheric carbon content by means of carbon sink has been developed and researched gradually since the benefits of low cost, high efficiency, and simple operation. Forest carbon sink was regarded particularly. In this study, changes of carbon stocks at different period in Taiwan and effects of different land use on the carbon stocks were investigated. Then greenery deterioration index (GDI) derived from satellite image was used to estimate carbon stocks indirectly. Moreover, forest ecosystem plays an important role in carbon cycle. In order to understand changes of carbon flux in forest ecosystem, Forest-DNDC model was selected for simulation. Six vegetation types were extracted by using the data derived from Land Use Investigation of Taiwan (1995 and 2008) to calculate the carbon stocks of each vegetation type following the method of Intergovernmental Panel on Climate Change (IPCC). Results show that the increase amount of carbon stocks is 9,355,116 tons for the phase of 1995~2008, and the amount of average carbon stocks for the main land-use categories in Taiwan are forestry, aboriginal reserve, slope land, and urban planning area in order. It shows that land-use pattern related to carbon stocks significantly. Furthermore, correlation analysis indicates the GDI derived from SPOT satellite images of 12 rural villages which were selected as the study areas having a highly negative correlation with carbon stocks, hence can be effectively used as an index to estimate the amount of carbon stocks. Data of Cirques and Dark forests at Xue Mountain were collected and applied to simulate the model of Forest-DNDC. Results depict that litter had significant effects on soil organic carbon (SOC). Both SOC content and net ecosystem exchange (NEE) of carbon show a trend of gentle decline and have a flat gradient gradually for the simulation of 2008~2017. Comparing the scenarios of increasing temperature (0.01℃/yr) and current status, the difference of NEE is larger than that of SOC, and the net increasing amount of NEE is from 0.02% to 0.98% annually. Temperature and pH are the main factors, which significantly affect carbon flux. Sensitivity analysis shows that the amount of carbon flux can be adjusted sensitively by temperature in the simulation.
URI: http://hdl.handle.net/11455/34922
其他識別: U0005-1806201015405800
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.