Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35074
標題: 土壤轉換函數應用於水分特性曲線之研究
A Study of Pedotransfer Function Application for Estimating Water Characteristic Curve
作者: 林明毅
Lin, Ming-Yi
關鍵字: water characteristic curve
水分特性曲線
pedotransfer function(PTFs)
van Genuchten Model
Principle components analysis
土壤轉換函數
van Genuchten Model
主成分分析
出版社: 水土保持學系所
引用: 參考文獻 1. 吳晟哲,2010,土壤水力性質轉換函數之研究-以石門水庫集水區為例,國立中興大學水土保持學系研究所碩士論文。 2. 林俐玲、董小萍,1996,土壤物理學實習手冊,國立中興大學水土保持學系。 3. 林佳燕,2008,不同土壤質地Arya and Paris模式參數之推估,國立中興大學水土保持學系研究所碩士論文。 4. 林正錺、蘇銘燦,1986,多孔體不飽和導水度之理論計算,中國農業化學會誌,24:72-79。 5. 洪靖惠,2008,土壤水分特性曲線參數與物理性質關係之研究,國立中興大學水土保持學系研究所碩士論文。 6. 萬鑫森譯,1987,基礎土壤物理學,國立編譯館主編,茂昌圖書有限公司。 7. Ahuja, L. R., and D. Swartzendruber. 1972. An improved form of soil-water diffusivity function. Soil Sci. Soc. Am, Proc 36 : 9-14. 8. Arya, L.M., and L.F. Paris. 1981. A physico-emphirical model to predict soil moisture characteristic from particle size distribution and bulk density data. Soil Sci. Soc. Am. J. 47 : 1023-1030. 9. Berg, M. van den, E. Klamt, L.P. van Reeuwijk, and W.G. Sombroek. 1997. Pedotransfer functions for the estimation of moisture retention characteristics of Ferralsols and related soils. Geoderma 78 : 161-180. 10. Bouma, J., 1989. Using soil survey data for quantitative land evaluation. In: Stewart, B. A. (ed.), Adv. Soil Sci., vol. 9. Springer Verlag, New York, pp.177-213. 11. Brooks R. H., Corey A. T. 1964. Hydraulic properties of porous media. Hydrol. Pap., 3,Colorado State University, Fort Collins, Co. 12. Comegna, V., P. Damiani, M. Ek, and L. Mahrt. 1998. Use of a fractal model for determining soil water retention curves. Geoderma 85 : 307-323. 13. Corey, A. T. 1986. Mechanics of immiscible fluid in porous media, 2nd ed., Water Res. Publication, Fort Collin, Co. 14. Cornelis W.M., Ronsyn J., Van Meirvenne M., Hartmann R. 2001. Evaluation of pedotransfer functions for predicting the soil moisture retention vurve. Soil Sci. Soc.Am J.,65:638-648. 15. Cuenca, R.H., M. Ek, and L. Mahrt. 1996. Impact of soil water property parameterization on atmospheric boundary layer simulation. J. Geophnal. Res. 101 : 7269-7277. 16. Endelman. F.J., G.E.P. Box, J.R. Boyle, R.R. Hughes, D.R. Keeney, M.L. Northrup, and P.G. Saffigna. 1974. The mathematical modeling of soil-water-nitrogen phenomena. EDFB-IBP-74-8. Oak Ridge National Laboratory, Oak Ridge, Tenn. 17. Freeze, R. A., and J. A. Cherry. 1979. Groundwater, Prentice-Hall, 604pp. 18. Gupta, S.C., and W.E. Larson. 1979. Estimation soil water retention characteristic from particle size distribution, organic matter percent and bulk density. Water Resour. Res. 15:1633-1635. 19. Haverkamp, R., and J.Y. Parlange. 1986. Predictiong the water retention curve from particle-size distribution: 1.Sandy soils without organic matter. Soil Sci. 142: 25-33. 20. Kern, J. S., 1995. Evaluation of soil water retention models based on basic soil physical properties. Soil Sci. Soc. Am. J. 59,1134-1141. 21. Matula, S., and K. Špongrova. 2007. Pedotransfer function application for estimation of soil hydrophysical properties using parametric methods. Plant Soil Environ 53 : 149-157. 22. Miller, E. E., and R. D. Miller.1956. Physical theory of capillary flow phenomena. J. Appl. Phys. 27: 324-332. 23. Minasny, B., A. B. Mcbrantney, and K. L. Bristow. 1999. Comparison of different approaches to the development of pedotransfer functions for water- retention curves. Geoderma 93 : 225-253. 24. Mualem, Y. 1976. A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resour. Res. 12 : 513-522. 25. Pachepsky, Y., Timlin, and G. Varallyay. 1996. Artificial neural networks to estimate soil water retention from easily measurable data. Soil Sci. Soc. Am. J. 60 : 727-733. 26. Pachepsky, Y.,Tawls, W. J., Timlin, D. J., 1999. The current status of pedotransfer functions: their accuracy, reliability, and utility in field and regional-scale modeling. In: Corwin, D. L., Loague, K., Ellsworth, T. R.(eds.), Assessment of nonpoint source pollution in the vadose zone geophys. Monogr., vol. 108. American Geophysical Union, Washington, D. C., pp. 223-234. 27. Richards, L. A. 1931. Capillary conduction of liquids through porous mediums. Physics 1: 318-333. 28. Rawls, W. J., and D. L. Brakensiek. 1982 . Estimating soil water retention from soil properties. J. Irrig. Drainage Div. ASCE 108 : 166-171. 29. Santra, P., and B. S. Das. 2008. Pedotransfer functions for soil hydraulic properties developed from a hilly watershed of Eastern India. Geoderma 146 : 439-448. 30. Schaap, M.G., F.J. Leji, and M. Th. Van Genuchten. 1998. Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 62 : 847-855. 31. Schaap. M. G., Leij F. J., Van Genuchten M. Th. 1999. A bootstrap neural network approach to predict soil hydraulic parameters. In: van Genuchten M. Th. et al.(eds.): Proc. Int. Workshop Characterization and measurements of the hydraulic properties of unsaturated porous media. Univ. California, Tiverside, CA:1237-1250. 32. Scheinost, A.C.,W. Sinowski, and K. Auerswald. 1997. Regionalization of soil water retention curves in highly variable soilscape: I. Developing a new pedotransfer function. Geoderma 78 : 129-143 . 33. Tietje O., Tapkenhinrichs M. 1993. Evaluation of pedotransfer functions. Soil Sci. Soc. Am. J., 57:1088-1095. 34. Tyler, S. W., and S.W. Wheatcraft. 1989. Application of fractal mathematics to soil water retention estimation. Soil Sci. Soc. Am. J. 53 : 987-996. 35. van Genuchten, M. Th., 1980. A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. of Am. J., 44 : 892 -898. 36. van Genuchten, M. Th., Leij, F., 1992. On estimating the hydraulic properties of unsaturated soils. In: van Genuchten , M. Th., Leij, F. J., Lund, L. J.(eds.), Indirect methods for estimating the hydraulic properties of unsaturated soils. University of California, Tiverside, CA, pp. 1-14. 37. van Genuchten, M. Th., F. J. Leij, and L. Wu(eds.) 1999. Proc. Int. Workshop, Characterization and measurement of the hydraulic properties of unsaturated porous media. Parts 1 and 2. University of California, Riverside, CA, pp. 1602. 38. Varallyay, G., Mironenko, E. V., 1979. Soil water relationships in saline and alkali conditions. In: Kovda, V. A., Szabolcs, I.(eds.), Modelling of soil salinization and alkalinization, Agrokemia es Talajtan (Suppl.), 28, pp.33-82. 39. Vereecken, H. J. Maes, J. Feyen, and P. Darius. 1989. Estimating the soil moisture retention characteristic form txture, bulk density and carbon content. Soil Sci. 148:389-403. 40. Topp,G.C.,andE.E.Miller. 1966. Hystersis moisture characteristics and hydraulic conductivities for glass-head media. Soil Sci. Soc. Am. Proc. 30 : 156-162. 41. Williams, J., Ross, P., Bristow, K., 1992. Prediction of the Campbell water retention function from texture, structure, and organic matter. In: van Genuchten, M. Th., Leij, F. J., Lund, L. J.(eds.),Proc. Int. Workshop on indirect methods for estimating the hydraulic properties of unsaturated soils. University of Califormia, Riverside, CA, pp. 427-442. 42. Wosten, J. H. M., P.A. Finke , and M. J. W. Jansen. 1995. Comparison of class and continuous pedotransfer functions to generate soil hydraulic characteristics. Geoderma 66:227-237. 43. Wosten, J. H. M., A. Lilly, A. Nemes, and C. Le Bas. 1999. Development and use of a database of hydraulic properties of European soil. Geoderma 90 : 169 -185. 44. Wosten, J. H. M., Pachepsky, Y., Rawls, W. J., 2001. Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J. Hydrol. 251, 123-150.
摘要: 水分特性曲線為重要的土壤水力性質之一,但是實驗過程卻是非常繁瑣費時。近年來學者們紛紛提出土壤轉換函數(PTFs),利用常見之參數推估水分特性,為往後之研究提供便利之管道。 本研究以採集自台灣各地的22個土壤樣本進行分析,先進行基本土壤物理實驗及水分特性曲線之測定後,隨機選取其中12個土樣為實驗組,再將實驗數據代入van Genuchten Model中擬合出水力性質α與n。爾後利用複迴歸分析中之主成分分析法歸納出實驗組α、n值之迴歸式。並以剩餘10個土樣評估迴歸式之適用性,迴歸公式如下所示: ln⁡(α)=-0.06458×BD+0.001045×Sa-0.01297×C-0.11505×FC+0.106199×OM ln⁡(n)=0.7138-0.26254×BD-0.0002×Sa+0.00058×C -0.00527×FC-0.0113×OM 研究顯示參數ln(α)、ln(n)之判定係數為0.996、0.842,RMSE為1.333、0.093。在水分特性曲線之估算上,因採樣地點分散且在估計迴歸式時代入之土樣資料為隨機選取,並未依照質地分類, RMSE為0.021~0.063。比較前人迴歸式所得水分特性曲線,得之本研究對於不同質地之土壤其適用性較佳。
The soil water characteristic curves(SWCC) is one of the important soil hydraulic property, however the experiment is time-consuming. In recent years the scholars propose pedotransfer function one after another, predicting the soil water characteristic curve by using common property. To provide a convenient method for later study. This study analysis 22 samples which were collected around Taiwan. Predicting the basic soil properties and soil water characteristics curve, 12 samples were chosen randomly as training set and estimate the hydraulic parameters α and n by curve fitting technique of the van Genuchten Model. Laters using principle components analysis summarize the regression of α and n in training set. The accuracy of the equations were validated by other 10 soil samples. The regression equations were as follows: ln⁡(α)=-0.06458×BD+0.001045×Sa-0.01297×C-0.11505×FC+0.106199×OM ln⁡(n)=0.7138-0.26254×BD-0.0002×Sa+0.00058×C -0.00527×FC-0.0113×OM The results shows that the coefficient of determination (R2) of the parameter ln(α)、ln(n) of the estimating equations are 0.996 and 0.842. The root mean square error (RMSE) of parameter ln(α) 、ln(n) are 1.333 and 0.093 respectly, . In the estimation of water characteristic curve, the sampling location and the soil information were randomly chosen when validated the regression equation, the range of RMSE is 0.021~0.063. The applicability is better than previous study in different texture.
URI: http://hdl.handle.net/11455/35074
其他識別: U0005-2208201118011700
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201118011700
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.