Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3508
標題: 生醫級聚碳酸酯型聚胺酯之微相分離性質研究
The Effect of Micro-Phase Separation on the Biocompatibility of Biomedical Grade Poly(carbonate)urethanes
作者: 高有志
Kao, YuChih
關鍵字: poly(carbonate)urethane
聚碳酸酯型聚胺酯
micro-phase separation
atomic force microscopy
biocompatibility
blood compatibility
plasma protein adsorption
微相分離
原子力顯微鏡
生物相容性
血液相容性
血漿蛋白吸附
出版社: 化學工程學系
摘要: 本研究為探討二苯基甲烷二異氰酸鹽 / 聚己基乙基碳酸酯二醇之聚碳酸酯型聚胺酯系統的微相分離性質,藉改變合成單體比例,合成出不同微相分離程度之聚胺酯。本研究分為兩個階段。第一階段,先分析聚胺酯之物性及化性,再針對微相分離進行分析。在生物相容性方面研究內皮細胞、血小板、單核球與微相分離關聯性,在血漿蛋白吸附方面則探討白蛋白與纖維蛋白原在材料表面之吸附行為。第二階段則針對存放時間及浸水處理對微相分離影響進行研究,並以商用生醫級聚胺酯混摻聚碳酸酯型聚胺酯進行探討。 本研究發現PCU的合成製程中,鏈延伸劑與觸媒加入時間,會影響到聚合物的分子量分佈,且由其中可找到一個最佳合成製程。 在微相分離性質分析上,分別利用DMA之定量,與AFM之定性,來描述聚碳酸酯型聚胺酯的微相分離程度,本研究發現,隨聚碳酸酯型聚胺酯之軟鏈節增加,微結構中的特徵作用力也不太相同,造成Tg隨不同化學計量而有所變化,因而造成不同的微相分離。微相分離程度不同的表面,具有不同的微粗糙度,微相分離程度越大,粗糙度越大。PCU321A與PCU651A微相分離程度最大且最佳。 在微相分離性質的應用上,發現微相分離會影響內皮細胞的貼附生長(細胞相容性)、血小板的活化(血液相容性)、單核球的活化(發炎反應)及血漿蛋白的吸附,即微相分離越大,內皮細胞相容性越好,血小板活化個數越少,單核球活化越少,纖維蛋白原與白蛋白吸附比值越小。 本研究發現,微相分離所造成的微區尺寸與血漿蛋白的尺寸,也會影響血漿蛋白在聚碳酸酯型聚胺酯上的吸附,微區尺寸與血漿蛋白越相近,影響越大。 在存放狀態方面發現,隨鑄膜完成時間增加,存放時間會影響聚胺酯中的分子鏈間作用力,抗拉強度會提高,Tg會向高溫遷移,有微相混合現象。時間確實會影響PCU性質,應和膜之製程與軟鏈節的流動性有直接關聯。微相混合程度增加,的確會造成細胞相容性的下降。以水相保存聚胺酯並不會有任何影響。 在製備薄膜方面發現,在不同溫度(40℃、60℃、80℃)下,不同溫度也會有不同的微結構,其中以60℃下的製程,具較大的微相分離程度,其表面最適合細胞生長,也具有最佳物性。 由本研究可知道,微相分離較大的聚胺酯材料較適合用來當作生醫材料。
This study intended to establish the relationship between the micro-phase separation of poly(carbonate)urethanes (PCU) and their biocompatilibity. Seven different poly(carbonate)urethanes with different stoichiometries were synthesized using the same isocyanate, polycarbonate diol and chain extender, which were 4,4'-diphenylmethane diisocyanate (MDI), poly (hexyl, ethyl) carbonate diol (PC diol) and 2-butene-1,4-diol (BDO) respectively. The study was conducted in two parts. In the first part, we analyzed the physical and chemical properties of PCU. The micro-phase separation of PCU was evaluated by AFM (atomic force microscopy) and DMA (dynamic mechanical analysis). We investigated the correlation between the properties of micro-phase separation and the biocompatibility including endothelial cell proliferation, platelet activation, and macrophage formation. To further explore the underlying principle, adsorption behavior of human plasma albumin and fibrinogen on PCU was analyzed. In the second part, the effects of storage time and water environment on the micro-phase separation of PCU were examined. We also blended Pellethane 2363-80A and PCU to see if the mechanical properties of PCU could be improved. We found the reaction time for chain extender and catalyst would affect the molecular weight distribution. DMA and AFM could be used in quantitative and qualitative analyses of the micro-phase separation properties of poly(carbonate) urethanes. The characteristic forces within the micro-domain structures varied with different contents of soft segment. The micro-structures revealed phase-mixing or phase-separation domains. The glassy transition temperatures of PCU were changed by different reagent stoichiometries that further resulted in different micro-phase separation. Micro-phase separation or micro-phase mixing domains would affect the biocompatibilities. Greater micro-phase separation resulted in better endothelial cell growth, less platelet activation, less macrophage formation, and smaller fibrinogen versus albumin adsorption ratio. Both the surface domain sizes (resulted from the micro-phase separation) and plasma protein sizes would affect the protein adsorption on the PCU. The storage time after film cast altered the attractive forces between molecular chains of PCU. In conclusion, poly(carbonate)urethanes with larger micro-phase separation structures had better biocompatibility and were suitable for cardiovascular applications.
URI: http://hdl.handle.net/11455/3508
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.