Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35102
標題: 以環境指標優選集水區崩塌治理區位之研究
Management priority of watershed landside using environmental indices
作者: 朱豐沂
Chu, Feng-Yi
關鍵字: Collapse ratio
崩塌率
Vegetation recovery rate (VRR)
Multivarate analysis
priority site
植生復育率
多變量分析
優選區位
出版社: 水土保持學系所
引用: 1.工業技術研究院能源與資源研究所(1992),「崩塌地調查、規劃與設計手冊」,p.1。 2.王保進(2004),「多變量分析:套裝程式與資料分析」,高等教育文化事業有限公司。 3.孔德懷(2005),「崩塌地特性變遷偵測之探討-以清水溪集水區之六期影像應用為例」,國立中興大學水土保持學系碩士論文。 4.行政院農業委員會水土保持局(2005),「水土保持手冊-工程篇」。 5.朱子偉(2006),「層級分析法與模糊層級分析法於山坡地生態及災害綜合指標權重分析」,國立台北科技大學土木與防災研究所碩士論文。 6.李錦育(2001),「台灣崩塌地的分類與防治工法」,山地學報,19(5):425-429。 7.吳佐川(1993),「台灣地區崩塌地區域特性之研究」,國立台灣大學森林學系碩士論文。 8.吳柏毅(2005),「台灣中部地區崩塌地影響因子之分析研究」,國立中興大學土木工程學系碩士論文。 9.宋和禧(1999),「和社溪流域山崩地的分布及其變遷之研究」,國立臺灣師範大學地理研究所碩士論文。 10.周稟珊、魏正岳、沈淑敏、李錦發、張瑞津、劉盈劭、林雪美(2004),「應用數 值航測系統判釋納莉颱風後林口台地崩塌地之分布」,第十屆台灣之第四紀暨台灣盆地環境變遷研討會,p.88-90。 11.杜恆儉、陳華慧、曾伯勛(1991),「地貌學及第四紀地質學」,地質出版社。 12.林文賜(2009),「應用GIS及RS技術於震災崩塌地監測之研究」,水保技術,4(3):165-171。 13.林文賜、林昭遠、周文杰、黃碧慧(2007),「921 震災崩塌地景變遷監測之研究-以九九峰為例」,明道學術論壇,3(1):189-200。 14.林坤田(2005),「統包工程進度之因素分析-以建築工程為例」,國立台灣大學土木工程學研究所碩士論文。 15.林昭遠 (2000),「集水區地型因子自動萃取之研究-土石流危險溪流判釋之用」,中華水土保持學報,第三十一期,第一卷,第81-91頁。 16.林昭遠、林文賜,(2000),「集水區地文水文因子自動萃取之研究」,中華水土保持學報,31(3):247-256。 17.林昭遠、吳瑞鵬、林文賜 (2001),「921震災崩塌地植生復育監測與評估」,中華水土保持學報,第三十二期,第一卷,第59-66頁。 18.林昭遠、莊智瑋 (2009),「21地震崩塌地特性及變遷監測分析」9,921地震對生態影響與回復研討會,第11-32頁。 19.林昭遠、張力仁 (2000),「地文因子對土石流發生影響之研究-以陳有蘭溪為例」,中華水土保持學報,第三十一期,第三卷,第227-237頁。 20.林清山(1995),「多變項分析統計法」,東華書局,第.289-336頁。 21.林淑媛(2003),「地形地質均質區劃分與山崩因子探討」,國立中央大學應用地質研究所碩士論文。 22.林智勇(2010),「應用衛星影像探析土地利用型態與崩塌之關聯性─以臺北地區為個案研究」,臺灣大學地理環境資源學研究所學位論文。 23.林朝棨(1957),「台灣地形」,台灣省文獻委員會。 24.徐鐵良(1993),「地質與工程」,中國工程師學會,pp.1-26。 25.陳正昌、程炳林、陳新豐、劉子鍵(2003),「多變量分析方法-統計軟體應用」,五南圖書公司。 26.陳正祥(1960),「台灣地誌」,敷明產業地理研究所研究報告第九十號,pp.768-770。 27.陳永寬、賴晃宇(1994),「數值地形模型應用於潛在崩塌地之預測」,8:47-64。 28.陳彥傑、宋國城(1999),「以碎形為基礎的台灣地形分區」,環境與世界,3:1-15。 29.陳信雄(1995),「崩塌地調查與分析」,渤海堂出版社。 30.陳建同(2009),「應用影像分段技術與多時段衛星影像於崩塌地植生復育成效分析研究」,國立成功大學資源工程學系博士論文。 31.陳昱豪(2005),「集水區泥砂產量推估及崩塌地植生復育率之研究」,國立中興大學水土保持學系碩士論文。 32.陳振杰(1999),「陳有蘭溪流域的土石流發生與降雨關係之研究」,國立台灣大學地理研究所碩士論文。 33.陳朝圳(1999),「南仁山森林生態系植生綠度之季節性變化」,中華林學季刊,32(1):53-66。 34.陳順宇(1998),「多變量分析」,華泰書局。 35.許中立、吳重君、施保呈、林秀勇、戴欣怡(2009),「莫拉克颱風造成藤枝林道之災損與復建對策建議」,坡地防災學報8(3):23-38。 36.許煜煌(2002),「以不安定指數法進行地震引致坡地破壞模式分析」,國立臺灣大學土木工程學系碩士論文。 37.張石角 (1980) 基隆市東信路山坡地災變之研究,工程環境會刊,1:17-28。 38.張石角(1987),「山坡地潛在危險之預測及其在環境影響評估之應用」,中華水土保持學報,18(2):41-62。 39.張石角(2004),「特殊地質區與土石災害問題」,坡地防災創新研發成果研討會論文集,p.85-92。 40.張石角(2004),「太魯閣國家公園大同、大禮聯外交通設施工程之工程地形和地質之調查分析與可行性評估」,太魯閣國家公園管理處。 41.張瑞津、沈淑敏、劉盈劭(2001),「陳有蘭溪四個小溪流域崩塌與土石流發生頻率之研究」,台灣師大地理研究報告,34:63-83。 42.張瑞津(1994),「地形學圖研究的概觀」,中等教育,45:16-28。 43.莊智瑋(2010),「環境指標應用於崩塌地植生復育之研究」,國立中興大學水土保持學系博士論文。 44.游伯龍(1985),「行為與決策,知己知彼的基礎與應用」,中央研究院經濟研究所,p.408。 45.黃子懷(2011),「多時期衛星影像於九九峰災後植生復育指標之研究」,國立中興大學土木工程學系碩士論文。 46.黃文政(2010),「莫拉克颱風土砂災害河段清疏順序之研究」,國立中興大學水土保持學系碩士論文。 47.黃凱君(2008),「集水區潛在崩塌區位劃定之研究」,國立中興大學水土保持學系碩士論文。 48.黃筱梅(2001),「SPOT 衛星影像於裸露地變遷之偵測研究—以和社地區為例」,國立臺灣大學森林學系碩士論文。 49.鄒明城、孫志鴻(2004),「資料探勘技術在集集大地震引致山崩之研究」,地理學報,36:117-131。 50.潘文富(1997),「多變量分析在流域特性研究上之應用-以台灣東部流域為例」,花蓮師院學報,7:395-426。 51.廖軒吾(2000),「集集地震誘發之山崩」,國立中央大學應用地質研究所碩士論文。 52.楊智堯(1998),「類神經網路於邊坡破壞潛能分析之應用研究」,成功大學土木工程學系碩士論文。 53.蔡宗成(2006),「台18線五灣仔地滑研究」,國立成功大學土木工程研究所碩士論文。 54.劉施敏(2008),「石門水庫集水區治理決策支援系統建置與策略研擬」,國立臺灣大學工學院土木工程學系碩士論文。 55.賴晃宇、鄭祈全(1997),「應用地理資訊系統與多變值統計分析於水源涵養合安林之規劃-以台大實驗林為例」,台灣林業科學,12:421-441。 56.謝邦昌(1999),「SAS系統在統計分析上之應用」,網路應用暨套裝軟體研討會課程講義,p.1-5。 57.魏秀珍(2006)以小集水區崩塌地密度來探討影響曾文水庫流域邊坡穩定之因子,國立成功大學資源工程學系碩士論文。 58.羅文珊(2000),「台中市大坑山坡地管理分區劃設之研究」,逢甲土地管理學系碩士論文。 59.蘇苗彬、陳毅輝、方俊傑(2009),「應用不安定指數法於坡地崩塌之潛勢分析」,水保技術,4(1):9-23。 60.Anderson, T. W. (1963), “Asymptotic theory for principal component analysis,” Annals of Mathematical Statistics, 34(1):122-148. 61.Baker, V. R., (1986), “Introduction: Regional Landform Analysis,” In N.M. Short Sr. and R. Blair Jr.,eds., Geomorphology from Space, A Global Overview of Regional Landforms, National Aeronautics and Space Administration, NASA SP-486, Washington, D.C. 62.Cattell, R. B. (1966), “The scree test for the number of factors,” Multivariate Behavioral Research, 1(2):245-276. 63.Chung, Y. L. (1998), "Using remote sensing information in distribution of Betel Nut in Neipu Hsian Pingtung count", The second surveying and mapping of cross-strait and the seventeenth surveying science and application symposium, pp962-972. 64.Congalton, R. G. (1991), “A review of Assessing the Accuracy of Classifications of Remotely Sensed Data,” Remote Sensing of Environment, 3: 35-46. 65.Csiszar, I., Kerenyi, J. (1995), “The effect of the vegetation index on the daily variation of the active surface temperature,” Advance Space Research, 16(10): pp.177-180. 66.ESRI (1992), Understanding GIS-The ARC/INFO Method. 67.Feezor, D. R., M.C. Hirschi, and B.J. Lesikar. (1989), “Effect of cell size on AGNPS prediction. In:ASAE Winter Meeting in New Orleans,” ASAE Paper No.89-2662. 68.Fookes, P. G., M. Sweeney, C. N. D. Manby, and R. P. Martin (1985), “Geological and geotechnical engineering aspects of low-cost roads in mountainous terrain,” Engineering Geology, 21:1-152. 69.Gardiner, V. (1978), “Draiage Basin Morphometry, in Geomorphological Techniques,” Ed. Andrew Goudie, Unwin Hyman. 70.Gilbert, M. A., Soledad, G. and Joaquin, M. (1996), “Analysesof spectral - biophysical relationships for a corn canopy,” Remote Sensing of Environment, 55(1):11-20. 71.Guillande, R., P. Gelugne, J. M. Arqintzeff, R. Brousse, J. Horowicz, B. Deffontaines, and J. F. Parrot (1995), “Automated mapping of the landslide hazard on the island of Tahiti based on digital satellite data,” Mapping Sciences and Remote Sensing, 32(1):59-70. 72.Higuchi A, Kondoh, A., and Kishi, S. (2000), "Relationship among the surface albedo, spectral reflectance of canopy, and evaporative fraction at grassland and paddy field,” Advance Space Research, 26(7):1043-1046. 73.Hotelling, H. (1933), “Analysis of a complex of statistical variables into principal components,” Journal of Educational Psychology, 24:417-441. 74.Janssen, L. L. F., and F. J. M. Vanderwel (1994), “Accuracy assessment of satellite derived land-cover data: a review,” Photogrammetric Engineering and Remote Sensing, 60 (4):410-432. 75.Jensen, J. R. (1996), “Introductory Digital Image Processing A Remote Sensing Perspective,” Second Edition, Prentice Hall. 76.Jenson, S. K. and J.O. Domingue (1988), “Extracting topographic structure from digital elevation data for geographic information system analysis,” Photogrammetric Engineering and Remote Sensing, 54(11): 1593-1600. 77.Johnson, R. A., and D. Wichern. (1982), “Applied multivariate statistical analysis,” Prentice Hall, New Jersey. 78.Johnson, D. E. (1998). “Applied multivariate methods for data analysts.” Pacific Grove, CA: Duxbury Press. 79.Kaiser, H. F. (1960), “The varimax criterion for analytic rotation in factor analysis,” Psychometrika, 23:187-200. 80.Keefer, D. K. (2000), “Statistical analysis of an earthquake-induced landslide distribution–the 1989 Loma Prieta, California event,” Engineering Geology, 58:231-249. 81.Keefer, D. K., Wilson R. C., Mark R. K., Brabb E. E., Brown W. M., Ellen S. D., Harp E. L., Wieczorek G. F., Alger C. S., and Zatkin R. S. (1987), ”Applications of fuzzy logic to the prediction of soil erosion in a large watershed.” Geoderma 86:pp.183-209. 82.Koukis, G. and Ziourkis, C. (1991),”Slope instability phenomena in Greece:A Statistical Analysis.” Bulletin of the International Association of Engineering Geology, 43, pp.47-60. 83.Lin, W. T., C. Y. Lin, J. S. Tsai, and P. H. Huang (2008), “Eco-environmental changes assessment at the Chiufenershan landslide area caused by catastrophic earthquake in Central Taiwan,” Ecological Engineering, 33(3-4):220-232. 84.O''Callaghan, J. F. and D. M. Mark (1984), “The extraction of drainage networks from digital elevation data,” Computer Graphics and Image Processing, 28:323-344. 85.Pearson, K. (1901), “On lines and planes of closest fit to systems of points in spaces,” Philosoghical Magazine, Series, 6(2):559-572. 86.Pratsinis, S. E., M. D. Zeldin, and E. C. Ellis (1988), “Source resolution of the fine carbonaceous aerosol by principal component-stepwise regression analysis,” Environmental Science and Technology, 22:212-216. 87.Sharpe, C. F. S. (1938), “Landslides and related phenomena”, Columbia University Press, New York. 88.Senay G. B. and Elliott, R. L. (2000), “Combining AVHRR-NDVI and landscape data to describe temporal and spatial dynamics of vegetation,” Forest Ecology and Management, 128(1-2):83-91. 89.Varnes, D. J. (1978), “Landslides Analysis and Control,” National Academy of Sciences Transportation Research Board Specail Report, p.176. 90.Vieux, E., Needham, S., (1993), “Nonpoint-Pollution Model Sensitivity to Grid-Cell Size.,” Journal of water resource planning and management 119, pp141-157.
摘要: 莫拉克風災造成集水區多處崩塌,大量土石淹埋周遭村落民宅、阻礙河道,其中以南台灣災情最為嚴重。因崩塌地分布幅員遼闊,如何有效萃取崩塌區位、推測崩塌發生原因、監測植生復育狀況,將有助於劃定崩塌地潛感區位、探討植生復育率優劣與提供選定崩塌地治理重點區位之參考。 本研究利用旗山溪集水區風災前後之衛星影像,萃取崩塌區位及計算集水區崩塌率,並以風災一年後之衛星影像評估崩塌區位之植生復育率,顯示集水區崩塌率及植生復育率分別為8.07%、7.24%。另以集水區面積、集水區周長、集水區長度、河川主流長度、河川總長度、河川數量、平均高程、起伏量、源頭數量、平均坡度、集水區寬度、形狀因子、河川頻率與河川級序等14個地文因子;利用主成份分析探討其集水區崩塌率及植生復育率關係,結果顯示以集水區周長、源頭數量、河川數量、平均高程、平均坡度、起伏量、集水區寬度及形狀等因子對集水區崩塌率及植生復育率有顯著影響;可大致歸類為尺度類、梯度類及形狀類等三個主成份軸,由三個主成份軸約能萃取83.79%之成份。 以K means群集分析將集水區崩塌率分高、中、低及植生復育率分優、普通及差等各三類,利用區別分析分別探討崩塌率及植生復育率之影響因子,可各得三組之Fisher’s線性判別函數,其分類準確分別為67.5%及70%,藉由集水區地形因子能有效的劃定崩塌地之潛感區位及判釋植生復育之良窳區位;並以區別分析得知崩塌潛感及植生復育良窳區位比對群集分析崩塌率及植生復育率現況之差異做為優選評估指標,顯示旗山溪集水區內40個管理分區,以編號21、22、28、31、33及36等6個管理分區,為優先治理之區位,本研究發展之模式可供集水區崩塌地治理之參考。
Typhoon Morakot caused massive collapses in the watersheds which resulted in debris disasters and channel blockages of the nearby villages especially located at the southern Taiwan. Due to scattered distribution of the landslides, how to extract the watershed landslides, find the landslides occur reasons, and monitor the status of watershed’s vegetative restoration can be served as the references of delineating potential landslide areas, assessing the vegetative recovery rate (VRR) and providing the proprity management of the landslides. This study extracted the spatial distribution of landslides and calculated the collapse ratio in Cishan Creek watershed using satellite images before and after the Typhoon event. Besides, the VRR of the watershed was evaluated by applying the image taken a year after the hits of Morakot. The results show that the collapse ratio and VRR of the watershed were 8.07% and 7.24% respectively. The topographic factors of the watershed such as watershed area, watershed perimeter, watershed length, length of mainstream, rivers of total length, number of rivers, elevation, relief, number of headwaters, slope, watershed width, form factor, stream frequency and stream order are employed to study the contributions to the collapse ratio and VRR of the watershed. Among them, the factors of watershed perimeter, number of headwaters, number of rivers, elevation, slope, relief, watershed width and form factor can be classified as categories of scale, gradient, and form three principal component axes, which extract about 83.79% of information and show significant effects on the collapse ratio and VRR of the watershed. The VRR can further be grouped as excellent, ordinary, and poor rates, the collapse ratio be grouped as high, medium and low by K-means, which couples with discriminant analysis can derive Fisher''s linear discriminant function to explore the affecting factors of the collapse ratio and VRR for the watershed landslides. The results indicate that the accuracy of the classification for the collapse ratio and VRR can reach 67.5% and 70%. The topographic factors of a watershed can effectively interpret the potential landslides and VRR. The difference of categories derived from K-means and discriminant analysis can be used as the index of management priority. No. 21, 22, 28, 31, 33及36 are the management compartments which needed to be more concerned in Cishan Creek watershed, and the models developed in this study can be as the references of watershed landslide management.
URI: http://hdl.handle.net/11455/35102
其他識別: U0005-2906201209504500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2906201209504500
Appears in Collections:水土保持學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.