Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35110
DC FieldValueLanguage
dc.contributor盧光輝zh_TW
dc.contributor周天穎zh_TW
dc.contributor鄭皆達zh_TW
dc.contributor.advisor林俐玲zh_TW
dc.contributor.advisorLi-Ling Linen_US
dc.contributor.author王兆文zh_TW
dc.contributor.authorWang, Chao-Wenen_US
dc.contributor.other中興大學zh_TW
dc.date2013zh_TW
dc.date.accessioned2014-06-06T07:48:47Z-
dc.date.available2014-06-06T07:48:47Z-
dc.identifierU0005-3001201216434200zh_TW
dc.identifier.citation中文部份 圖書 內政部(2010),「變更臺灣北、中、南、東部區域計畫(第1次通盤檢討)-因應莫拉克颱風災害檢討土地使用管制」。 內政部營建署(2005),國土計畫功能分區劃定與土地使用管制機制結合。 內政部營建署城鄉發展分署 (2008),建立易致災地區之安全建地劃設機制與準則,委託研究報告。 王鑫 (1988),地形學,聯經出版有限公司。 山口伊佐夫(1985),集水區經營計畫學,台大森林學系防砂工程學研究室叢書1,P22-P37。 中央地質調查所(2006),都會區及周緣坡地環境地質資料庫圖集-圖幅使用說明書。 台北市政府建設局(2003),山坡地土地可利用限度查定作業數位化暨管理作業系統成果報告書。 行政院農業委員會水土保持局(2006),山坡地可利用限度分類標準檢討成果報告。 行政院農業委員會,台灣農家要覽增修訂3版。 行政院農業委員會水土保持局(1994),台灣省山坡地土地可利用限度查定之工作手冊。 行政院農業委員會水土保持局(1984),山坡地土壤調查報告(彰化及南投縣)。 吳明敏、許銘義、張志銘(2004),土石流災害防治與國土永續發展之新思維,台灣智庫農業論壇。 林國慶(2005),山地農業定位與發展之研究,94年科技計畫研究報告。 林俐玲(2003),土壤沖蝕程度判定,92年度山坡地土地可利用限度查定教育訓練教材,第57-70頁,行政院農業委員會水土保持局出版。 林俐玲(2004),山坡地保育與利用之探討,財團法人國家政策研究基金會國改研究報告,科經(研)093-004號。 林朝棨(1957)台灣地形。台北:台灣文獻。 徐森彥(2003),山坡地分類查定邁向新紀元之理念與行動,92年度山坡地土地可利用限度查定教育訓練教材,6-25頁,行政院農業委員會水土保持局出版。 周天穎(2003),地理資訊系統理論與實務,儒林圖書有限公司。 周天穎、周學政(2000), Arc View 透視3.X,松崗電腦圖書資料股份有限公司,P4.1-P4.15、P9.1-P9.21。 陳信雄(1997),集水區經營學,明文書局。 陳正昌(2004),行為及社會科學統計學──統計軟體應用(三版)。臺北市:巨流。 郭魁士(1997),土壤學,中國書局。 張忠俊(2003),山坡地開發實務,高立圖書有限公司。 潘國樑(1992),山坡地地質分析,科技圖書股份有限公司。 經濟部中央地質調查所(2007),易淹水地區上游集水區地質調查與資料庫建置(第1階段96年度)集水區地質調查及山崩土石流調查與發生潛勢評估計畫。 期刊論文 王琮文(2010),複合坡公式應用於估算草帶處理之土壤流失量適用性研究,國立屏東科技大學水土保持系碩士學位論文。 宋文彬、陳啓天、馮正一(2005),應用數值高程模型於山坡地土地可利用限度分類查定作業,台灣地理資訊學會年會暨學術研討會。 吳嘉俊、盧光輝、林俐玲(1996),土壤流失量估算手冊,國立屏東技術學院編印。 沈耀在、柯鄉黨(1994),改善山坡地開發管理制度之研究-應用成長管理之理念,私立淡江大學建築研究所碩士論文。 宋文彬(2006),「利用DEM計算山坡地地籍坵塊平均坡度之研究」,國立中興大學水土保持學系碩士論文。 林憶志(2009),結合USLE以輔助山坡地土地可利用限度分類之探討,國立中興大學水土保持系碩士論文。 林俐玲(1995),覆蓋管理因子(C值)之評定,中美陡坡土壤流失量推估技術研討會論文集,PP109-116。 洪怡美(1998),應用地理統計推估土壤沖蝕指數,國立中興大學水土保持學系碩士論文。 林俐伶、陳錦嫣 (2000),台灣西部地區集水區農業土壤資料庫之建立與應用,集水區土砂災害防治與資料庫技術應用推討會,第32-43頁。 林俐玲、王兆文、沈哲緯、陳品岡、翁志成(2011),應用支持向量機探討山坡地土壤沖蝕程度之研究,水土保持學報,43(1)-4。 林俐玲、王兆文、沈哲緯(2011),運用羅吉斯迴歸分析山坡地土地可利用限度查定分類,水土保持學報,43(3)-3。 姜燁秀、林俐玲(2011),山坡地超限利用相關處理與法規論述,水土保持學報,43(2)-8。 洪崇仁、陳文福(2007),「台灣山坡地可利用限度分類標準實務性檢討之研究」,國立中興大學水土保持學系碩士論文。 陳木龍、羅榮華(2009),整合支援向量機及基因演算法來進行軟體可靠度預測,2009 第17屆模糊理論及其應用研討會。 陳志彰(2005),山坡地可利用限度之查定及土地利用合理性之研究,國立成功大學地球科學碩士論文。 陳璁慶(2004),坡度萃取方式對山坡地解編區位之探討─以台中縣龍井鄉為例,國立中興大學水土保持學系碩士論文。 陳志彰(2005),山坡地可利用限度之查定及土地利用合理性之研究,國立成功大學地球科學碩士論文。 郭唐豪(2000), 德基水庫集水區農地利用之適宜性評估, 國立東華大學自然資源管理研究所碩士論文 黃俊德(1981),台灣降雨沖蝕指數之研究,中華水土保持學報,10(1):127-143。 黃誌川、徐美玲(2001),以不同網格數值地形解析度和計算方法析取坡度之比較,中華水土保持學報,32(3):199-205。 廖洪鈞、胡逸舟、許秋玲(2003), GIS於山坡地土地可利用限度查定之應用,第十屆大地工程學術研討會論文集,25– 28。 萬鑫森、黃俊義(1989),台灣坡地土壤沖蝕,中華水土保持學報,20(2):17-45。 廖洪鈞、胡逸舟、許秋玲(2003), GIS於山坡地土地可利用限度查定之應用,第十屆大地工程學術研討會論文集,25– 28。 盧光輝(1999),降雨沖蝕指數之修訂,中華水土保持學報,30(2):87-94。 盧昭堯、蘇志強、吳藝昀(2005),台灣地區年等降雨沖蝕指數圖之修訂,中華水土保持學報,第三十六卷,第二期,第159-172頁。 蘇政宇、鄭旭涵、林家榮、林昭遠(2007),地理資訊於土地可利用限度之劃定與土地利用適宜性之評估,水土保持學報,39(4):333-354。 其他 日本(2000),土砂災害防治法。 中華人民共和國(1991),水土保持法。 中華人民共和國國家技術監督局(1995),水土保持綜合治理規劃通則。 中華人民共和國水利部(1997),土壤侵蝕分類分級標準。 行政院(2002),限制發展地區救助、回饋、補償處理原則。 行政院(2004),「國土計畫法」草案。 行政院(2005),國土復育策略方案暨行動計畫。 行政院(2005),「國土復育條例」草案。 行政院農業委員會(2003),水土保持技術規範。 行政院農業委員會(2003),水土保持手冊附冊。 行政院農業委員會(2004),山坡地土地可利用限度查定工作要點。 行政院農業委員會(2005),山坡地保育利用條例,水土保持法暨相關法規。 行政院農業委員會(2005),山坡地保育利用條例施行細則,水土保持法暨相關法規。 行政院農業委員會(1995),山坡地土地可利用限度查定工作要點。 行政院農業委員會水土保持局(1995),台灣省山坡地土地可利用限度查定之工作手冊。 行政院農業委員會(1976),山坡地保育利用條例,水土保持法暨相關法規。 行政院農業委員會(1977),山坡地保育利用條例施行細則,水土保持法暨相關法規。 西文部分 Books Anderbeg, M. (1973), ” Cluster Analysis for Applications “(New York: Academic). British Columbia Ministry of Environment and Ministry of Agriculture and Food.(1983), ”Land capability classification for agriculture in British Columbia”. Boser, B. E., I. M. Guyon and V. Vapnik (1992) , A training algprithm for optimal margin classifiers. In Fifth Annual Workshop on Competational Learning Theory, Pittsburgh. Dave Franzen, Nels Peterson(2003), Land and homesite judging in North Dakota, North Dakota State University. David, L. and M. R. Bill (2003), 4-H Land Judging in Kentucky, University of Kentucky College of Agriculture. Doolittle, J. J. and D. D. Malo(2002), ”Land judging in South Dakota, South Dakota State University College of Agriculture & Biological Sciences. Feinberg, S. (1985), ”The analysis of cross-classified categorical data (2nd ed.),Cambridge”, MA: MIT Press, 198p. Fletcher, R. (1987), Practical Method of Optimization. John Wiley and Sons, Inc. Francis, B. (2006), “Fundamentals of Land Evaluation in Nebraska”, Judging Soil and Land. Natural Resources Conservation and Survey Division University of Nebraska. Franklin, J. A. (1975), ”Safety and Enconomy in Tunneling.”Proc. 10th can. Rock Mech.Symp., Queens University, Kingston, Canada, pp:325-341. Hair, J. F., R. E. Anderson, R. L. Tatham and W. C. Black (1998), ”Multivariate data analysis”, 5th Edition. Prentice-Hall,Upper Saddle River, NJ. Hans, K.(1994), Land Judging and homesite evaluation, Kansas state university. Hosmer, D. W and S. Lemeshow (1989), Applied Logistic Regression. New York: Wiley. ISRM (1981), Rock characterization, testing and monitoring. International Society for Rock Mechanics, Suggested Methods,Pergamon Press, Oxford. Brown, E.T. Jeff, S.(2007), “Land Judging in West Virginia”, West Virginia University. Keith, C. (2004), Instructions on Land Judging in Mississippi, Mississippi State University Extension Center. Laws, J. O. and D. A. Parsons (1943), The relation of raindrop-size to intensity, Transactions American Geophysical Union 24, 452-460. Ministry of Agriculture, Fisheries and Food (1988), ” Agricultural Land Classification of England and Wales “. Robert, H. (2006), Land Judging in Colorado”, Colorado State University. Stephen, M.(2003), Land Career Development event ”,ALABAMA FFA ASSOCIATION. Swets, J. A. (1988), Measuring the accuracy of diagnostic systems, Science, 240(4857), 1285-1293. Vapnik, V. N. (1995), The Nature of Statistical Learning Theory, Springer-Verlag. Wilson, J. P. and J. C. Gallant (2000), “ Digital terrain analysis - principles and applications”, New York, John Wiley & Sons. Wischmeier, W. H. (1959), “A rainfall erosiond index for a universal soil loss equation”, Soil Sci. Soc. Am. Proc. 23: 246-249. Wischmeier, W. H. and D. D. Smith (1978), Predicting rainfall erosion losses a guide to conservation planning”, U.S. Department of Agriculture,Agricultural Handbook, No.537. Wisconsin NRCS. (2009), “Soil Study and Land Evaluation Materials for Land Judging Competitions “, www.wi.nrcs.usda.gov/technical/soil/soiljudging.html. Journal Articles Agresti, A. (2002), Categorical data analysis ,2nd ed., John Wiley, 710p. Bakker, M. M., G. Govers, C. Kosmas, V. Vanacker, K. Oost and M. Rounsevell (2005), “Soil erosion as a driver of land-use change.Agriculture”, Ecosystems and Environment 105, 467-481. Bewket, W. and E. Teferi (2009), “Assessment of soil erosion hazard and prioritization for treatment at the watershed level : case study in the Chemoga watershed, Blue Nile Basin”, Ethiopia. Land Degradation & Development 20, 609-622. Bhagat, R. M., S. Singh, C. Sood, R. S. Rana, V. Kalia, S. Pradhan, W. Immerzeel and B. Shrestha (2009), “Land Suitability Analysis for Cereal Production in Himachal Pradesh(India) using Geographical Information System”,J. Indian Soc. Remote Sens. 37:233–240. Biswajeet, P.(2010), “Remote sensing and GIS-based landslide hazard analysis and cross-validation using multivariate logistic regression model on three test areas in Malaysia “, Available online at www.sciencedirect.com. Bobade, S. V., B. P. Bhaskar, M. S. Gaikwad, P. Raja, S. S. Gaikwad, S. G. Anantwar, S. V. Patil, S. R. Singh and A. K. Majia (2010),”A GIS-based land use suitability assessment in Seoni district, Madhya Pradesh, India”, Tropical Ecology 51(1): 41-54. Burton, A. and J. C. Bathurst (1998) , ”Physically based modeling of shallow landslide sediment yield at a catchment scale”, Environmental Geology, 35, 89-99. Carrara, A., G. Crosta and P. Frattini (2008) , “Comparing models of debris-flow susceptibility in the alpine environment”, Geomorphology 94 (2008) 353–378. Cattell, R. B. (1966), “The scree test for the number of factors. Multivariate Behavioral Research”, Vol.1, pp. 629-637. Cengiza, Tulay, Akbulakb Cengiz (2011), International Journal of Sustainable Development & World Ecology, International Journal of Sustainable Development & World Ecology Vol. 16, No. 4, August 2009, 286–294. Chen, C. Y. and F. C. Yu(2011), “Morphometric analysis of debris flows and their source areas using GIS”, Geomorphology 129 ,387–397 Chung, C. F. and A. G. Fabbri (2003), ”Validation of spatial prediction models for landslide hazard mapping. Natural Hazards 30, 451-472. Collins, A. E. (2001), “Land Degradation & Development“Volume 12, Issue 3, pages 237–250. Conoscenti, C., C. D. Maggio,E. Rotigliano (2008), “Soil erosion susceptibility assessment and validation using a geostatistical multivariate approach: a test in Southern Sicily”, Nat Hazards, 46:287–305. Dabral, P. P., N. Baithuri and A. Pandey (2008), “Soil erosion assessment in a hilly catchment of north eastern India using USLE”, GIS and Remote Sensing.Water Resour Manage 22, 1783-1798. Dai, F. C. and C. F. Lee (2003), ” A Spatiotemporal probabilistic modeling of storm-induced shallow landslideing using aerial photographs and logistic regression”, Earth Surface Processes and Landforms Earth Surf. Process. Landforms 28, 527–545. Dai, F. C. and C. F. Lee (2002) ,” Landslide characteristics and slope instability modeling using GIS, Lantau Island, Hong Kong”, Geomorphology 42 , 213– 228. Dengiz, O., T. Yakupoglu and O. Baskan (2009), “Soil erosion assessment using geographical information system (GIS) and remotesensing (RS) study from Ankara-Guvenc Basin, Turkey”, Journal of Environmental Biology 30(3), 339-344. Dominguez-Cuesta, M. J., M. Jimenez-Sanchez and E. Berrezueta (2007), “ Landslides in the Central Coalfield (Cantabrian Mountains, NW Spain): Geomorphological features, conditioning factors and methodological implications in susceptibility assessment”, Geomorphology, 89,358-369. Dong, J. J., C. T. Lee, Y. H. Tung, C. N. Liu, K. P. Lin and J. F. Lee (2009) ,” The role of the sediment budget in understanding debris flow susceptibility”, EARTH SURFACE PROCESSES AND LANDFORMS Earth Surf. Process. Landforms 34, 1612–1624. Duman, T. Y., T. Can, C. Gokceoglu, H. A. Nefeslioglu and H. Sonmez(2006), ” Application of logistic regression for landslidesusceptibility zoning of Cekmece Area,Istanbul, Turkey”, Environ Geol ,51: 241–256. Dupin, B., A.D. Rouw, K.B. Phantahvong and C. Valentin (2009), “Assessment of tillage erosion rates on steep slopes in northern Laos”, Soil & Tillage Research 103, 119-126. Forster, G. R., D. K. McCool, K. G. Renard and W.C. Moldenhauer (1981), “Conversion of the Universal Soil Loss Equation to SI metric units,” Journal of Soil and Water Conservation, 36:355-359. Gokceoglu, C., H. Sonmez,. H. A. Nefeslioglu, T. Y. Duman and T. Can(2005) ,” The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslide-susceptibility map of its near vicinity, Engineering Geology 81 (2005) 65–83. Guinau, M., I. Vilajosana and J. M. Vilaplana (2007) ,” GIS-based debris flow source and runout susceptibility assessment from DEM data – a case study in NW Nicaragua”, Nat. Hazards Earth Syst. Sci.,7, 703–716. Heimsath, A.M., Dietrich W.E., Nishiizumi K., Finkel R.C. (1999), “Cosmogenic nuclides, topography, and the spatial variation of soil depth”, Geomorphology 27(1–2): pp.151–172. Hotelling, H. (1993), “Analysis 0f a Complex of Statistical Variables into Principal Components.” Journal of Educational Psychology, 24:417-520. Kaiser, H. F. (1960), “The application of electronic computers to factor analysis”, Educational and Psychological Measurement, Vol.20, pp.141-151. Kappes, M. S., J. P. Malet, A. Remaitre, P. Horton, M. Jaboyedoff and R. Bell1 (2011) ,” Assessment of debris-flow susceptibility at medium-scale in the Barcelonnette Basin, France”, Nat. Hazards Earth Syst. Sci., 11, 627–641. Kosmas (2000), The effect of land parameters on vegetation performance and degree of erosion under Mediterranean conditions, CATENA, 40:3-17. Lee, C. T., C. C. Huang, C. F. Lee, K. L. Pan, M. L. Lin and J. J. Dong (2007), “Event-Based Landslide Susceptibility Analysis - an Example from Central Western Taiwan”, Geophysical Research Abstracts, 9, 06216. Lee, C. T., L. Y. Fei, C. F. Li, M. L. Lin, C. C. Tung and C. W. Chang (2008), ”Landslide and Debris Flow Susceptibility of Shihmen Reservoir Catchment Area; Dissertation CD of the sixth cross-strait seminar over slopeland disasters and environmental preservation, 10p. Lee, C. T., C. C. Huang, J. F. Lee, K. L. Pan, M. L. Lin and J. J. Dong (2008) ,”Statistical approach to earthquake-induced landslide susceptibility”, Natural Hazards and Earth System Sciences, 8, 941-960. Lee, S. and T. Sambath(2006) ,”Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models , Environ Geol (2006) 50: 847–855. Li, C. Y., W. C. Lo, C. Y. Chen, C. W. Shen and T. C. Tsao (2010), “Using Logistic Regression to Predict the Susceptibility of Debris Flow Hazard in Hualien,Taiwan”, 4th Japan-Taiwan Joint Worlshop on Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls, pp431 - 441. Li, Y., Y. Tian, Z. Ouyang, L. Wang, T. Xu, P. Yang and H. Zhao (2010), “Analysis of soil erosion characteristics in small watersheds with particle swarm optimization, support vector machine, and artificial neuronal networks”, Environ Earth Sci 60:1559–1568. Lin, L. L., C. W. Wang, C. L. Chiu and Y. C. Ko (2010), “A study of rationality of slopeland use in view of land preservation”, Paddy and Water Environment, DOI 10.1007/s10333-010-0231-5. Liu, K. F., H. C. Li and Y. C. Hsu (2009), “Debris flow hazard assessment with numerical simulation”, Nat Hazards (2009) 49:137–161. Long, d. and b. Li (2006), “Research of small water erosion prediction model base on SVM”, Science of soil and water conservation. V4(6): 48-51. Luiz Alberto Blango Jorge. (2009), “Soil erosion fragility assessment using an impact model and geographic information system”, Sci. agric. 66(5). Magliulo, P. (2010), “Soil erosion susceptibility maps of the Janare Torrent Basin(Southern Italy)” Journal of Maps 2010, 435-447. Malczewski, J. (2004), ” GIS-based land use suitability analysis: a critical overview”, progress in planning 62:3-65. Marcel, Š., C. Tomáš, H. Jaroslav and F.Emil (2002), ” Erosion assessment of slovakia at a regional scale using GIS”, Ecology (Bratislava), Vol. 21, No. 4, p. 404-422. Mokma, D. L., T. E. Fenton and K. R. Olson (1996), “Effect of erosion on morphology and classification of soils in the North Central United States”, Journal of Soil and Water Conservation, Vol. 51,171-175. Moore, I. D., R. B. Grayson and A. R. Landson (1991), “Digital Terrain Modeling: a Review of Hydrological, Geomorphological, and Biological Applications”,Hydrological Processes, Vol. 5,3-30. Moore, I. D. and J. P. Wilson (1992), Length-slope factors for the Revised Universal Soil Lass Equation: Simplified method of estimation. Journal of Soil and Water Conservation, 47,423-428. Ni, J. R., X. X. Li and A. G. L. Borthwick (2008), “Soil erosion assessment based on minimum polygons in the Yellow River basin, China”, Geomorphology 93 (2008) 233–252. Nisar, T. R. Ahamed, K. Gopal Rao and J. S. R. Murthy (2000), “Fuzzy class membership approach to soil erosion modelling”, Agricultural Systems 63, 97-110. Oh, H. J. and S. Lee (2010), ” Landslide susceptibility mapping on Panaon Island, Philippines using a geographic information system”, Environ Earth Sci, 62:935–951. Oh, H. J., S. Lee, W. Chotikasathien, C. H. Kim and J. H. Kwon (2009), “Predictive landslide susceptibility mapping using spatial information in the Pechabun area of Thailand“, Environ Geol,57:641–651. Park, S.J., K. McSweeney and B. Lowery (2001), ” Identification of the spatial distribution of soils using a process-based terrain characterization” Geoderma 103, 249–272. Pearson, K. (1901), “On Lines and Planes of Closest Fit to Systems of Points in Space.”Phil. Mag., 6:559--572. Ser. 2. Pineda, N., E. Jaimes, B. Hidalgo, J. J. Gonzalezy and H. Rodriguez (2009),“Agricultural land classification with soil conservation purposes in plots of horticultural use”, Alto Motatán sub-basin, Mérida-Venezuela.Rev. Fac. Agron. 26, 532-554. Rejaur, R. M., Z. H. Shia, C. Cai (2009), “Soil erosion hazard evaluation—An integrated use of remote sensing, GIS and statistical approaches with biophysical parameters towards management strategies”, Ecological Modelling 220 1724–1734. Romana, M. R. (1993), “A Geomechanical Classification for Slopes: Slope Mass Rating”, Comprehensive Rock Engineering, vol3:576-598. Rouse, J. W., R. H. Hass, J. A. Schell and D. W. Deering(1973), ”Monitoring Vegetation Systems in the Great Plain With ERTS”, In Third ERTS Symposium, NASA SP-351, NASA, Washington, DC., Vol.1 , pp :309-317. Rozenstein O. and A. Karnieli(2011), Comparison of methods for land-use classification incorporating remote sensing and GIS inputs, Applied Geography 31 533-544. Shirazi, M. A.and L. Boersma (1984), “A unifying quantitative analysis of soil texture”, Soil Science Society of American Journal, 48:142-147. Sonneveld, B. G. J. S. (2003), “Formalizing expert judgements in land degradation assessment: a case study for Ethiopia”, Land Degradation & Development Volume 14, Issue 4, pages 347–361. Su, F., P. Cui, J. Zhang and L. Xiang (2010), “Susceptibility Assessment of Landslides Caused by the Wenchuan Earthquake Using a Logistic Regression Model”, J. Mt. Sci. 7: 234–245. Sujatha, E. R., V. Rajamanickam, P. Kumaravel and E. Saranathan (2011)”Landslide susceptibility analysis using probabilistic likelihood ratio model—a geospatial-based study”,Arab J Geosci, DOI: 10.1007/s12517-011-0356-x. Tunusluoglu, M.C, C. Gokceoglu , H.A. Nefeslioglu and H. Sonmez (2008) Extraction of potential debris source areas by logistic regression technique, Environmental Geology,54, 9-22 . Vahidnia1, M. H., A. A. Alesheikh, A. Alimohammadi and F. Hosseinali (2009),” Landslide Hazard Zonation Using Quantitative Methods in GIS”, International Journal of Civil Engineerng. Vol. 7, No. 3, 176-189. Wang, K., H. J. Wang, X. Z. Shi, D. C. Weindorf, D. S. Yu, Y. D. Liang, and M. Shi (2009), “Landscape analysis of dynamic soil erosion in Subtropical China: A case study in Xingguo County”, Jiangxi Province.Soil & Tillage Research 105, 313-321. Wu, J., Y. Liu, J. Wang and T. He(2010),” Application of Hyperion data to land degradation mapping in the Hengshan region of China”, International Journal of Remote Sensing Vol. 31, No. 19, 5145–5161. Wu, Q. and M. Wang (2007), “A framework for risk assessment on soil erosion by water using an integrated and systematic approach”, Journal of Hydrology (2007) 337, 11– 21. Zhu, D., T. W. Wang, C. F. Cai, L. Li and Z. H. Shi (2009), “Large-scale assessment of soil erosion using a neuro-fuzzy model combined with GIS : a case study of Hubei province,China”,Land Degradation & Development 20, 654-666.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/35110-
dc.description.abstract早期台灣山坡地土地利用由於缺乏通盤規劃,且山地農地資源隨經濟結構改變之影響,爰於1976年公布山坡地保育利用條例以規範山坡地範疇,為管理山坡地農地資源狀況,乃訂定「山坡地土地可利用限度分類標準」,將山坡地依其平均坡度、土壤有效深度、土壤沖蝕程度及母岩性質等因子,區分宜農牧地、宜林地及加強保育地,依照四項因子條件全面查定山坡地土地利用分類,惟查定人員往往現場判定受於地形複雜度而影響判定基準,其中土壤沖蝕程度因子之判定更為不易,故本研究從濁水溪流域挑選南投縣竹山鎮大坑段、大鞍段、筍子林、鯉魚尾及雲林縣古坑鄉草嶺段等五個地段之地籍坵塊單元為樣區,採用支持向量機方法,選取坡度、地形曲率、降雨沖蝕指數、土壤沖蝕指數、土地覆蓋與管理指數等因子進行山坡地土壤沖蝕程度分析,透過分類矩陣得知訓練模式之總體正確度為77.18%。再運用羅吉斯迴歸統計方法,選取除前項土壤沖蝕程度各項因子外,再加上土壤有效深度、坡地岩體強度、常態化差異植生指數等因子進行山坡地土地可利用限度查定分類分析,得知宜林地與宜農牧地準確率皆有七成以上,總體準確度達73%,而驗證總準確度亦達7成以上,模式預測成效尚稱良好,故本研究所建立山坡地土壤沖蝕程度潛勢分級模式暨山坡地土地可利用限度分類模式,應可輔助查定人員現場判定參考,以提升查定人員之行政效率。 另探討近年來豪雨及颱風重創台灣脆弱之山地,且又受人為不當開發利用等諸多影響下,均喚起民眾對國土保安之重視,山坡地土地可利用限度分類查定係為國土保育之重要一環,然現今易致災潛勢之高山地區,查定土地多為宜林地或宜農牧地,零星分佈結果造成土地破碎化且破壞景觀生態等嚴重問題,每當豪雨颱風來臨時具有立即性危害,為達到有效坡地利用合理分配,本研究案例選用濁水溪流域為範圍,以集水區為分析單元,選取總曲率、平均坡度、平均高程、水力沖蝕指數(SPI)、坡向標準差、土地利用現況及常態化差異植生指標(NDVI)等7項影響因子,運用羅吉斯迴歸方法建立易致災潛感模型,此模型解釋易致災之成功率曲線其曲線下面積(AUC)達91.1%。再透過群集分析法劃定濁水溪易致災潛勢區。 本研究所建立之易致災潛勢分級,選定濁水溪流域內南投縣信義鄉豐丘段為區域,以國土保育導向探討山坡地土地可利用限度查定標準之合理性,並針對高潛勢之易致災地區不適宜作農業使用者,提出坡地分級分區管制作為,作為政府修訂坡地土地利用相關法規之參考。zh_TW
dc.description.abstractAt the early stage slopeland utilization in Taiwan lacked integral planning and farmland sources in the mountains were affected by the changing economy structures, Slopeland Conservation and Utilization Act was therefore promulgated in 1976, aiming to regulate the scope of slopelands. “Classification standard of slopeland utilization limitations” was set forth for managing farmland resources of slopelands, classifying slopelands into agriculture and husbandry land, land suitable for forestry and lands for enhanced conservation according to their average slope, soil depth, soil erosion degree and parental rock . However the ruling criteria of the site-survey personnel were frequently affected by the complexity of the terrain, of which the factor of soil erosion degree was of exceptional difficulty. Therefore the study selects 5 cadastral units (Da-Keng Section, Da-An Section, Sun-Zih-Lin Section and Li-Yu-Wei Section in Jhushan Township of Nantou County; and Tsao-Ling Section in Gukeng Township of Yunlin County.) as sample areas to carry out slopeland soil erosion degree analysis using Support Vector Machine method and selecting factors including slope, terrain curvature, erosivity index, erodibility index, land cover and management index. By way of error matrix, the overall accuracy of the training mode is found to be 77.18%. Categorized analysis of classification of slopeland utilization limitations is then carried out by statistics using logistic regression selecting the abovementioned factors combined with factors of soil depth, rock mass of the slopeland, and normalized difference vegetation index (NDVI), the results show that accuracy of lands suitable for forestry and that of lands suitable for agriculture and husbandry are all above 70%, the overall accuracy has reached 73% and the total verification accuracy has also reached above 70%, indicating that the modal prediction shows an agreeable outcome. Therefore the classification model of slopeland soil erosion degree potential and the classification model of slopeland utilization limitations created by the study can be used as auxiliary references for the classification personnel in making on-site rulings, so as to enhance administrative efficiency of the said personnel. Further discussions are made over the vulnerable slopeland of Taiwan that are frequently devastated by heavy rainfall and typhoon attacks as well as improper developments. The classification of slopeland utilization limitations is an important link to national land conservation, however the verified lands in the disaster susceptible slopeland are mostly suitable for forestry or for agriculture and husbandry. These lands are scattered, and the severance of theses lands brought up critical issues such as affecting the natural scenery and the local ecology. In order to achieve effective slopeland use and rational distribution, the study selects Jhuoshuei River as the scope of the case study, using watersheds as analysis units, seven vulnerability factors are selected, namely total curvature, average slope, average elevation, SPI, standard deviation of aspect, land use and NDVI in companion with a model of disaster susceptibility created based on logistic regression. This model interprets the success rate curve of disaster susceptibility and gives an area under the curve (AUC) of up to 91.1%. Subsequently the diagram of disaster susceptibility classification results of the Jhuoshuei River is created via Cluster Analysis. The classification of disaster susceptibility set forth by this study is accomplished by selecting Feng-Chi Section, Sinyi Township of Nantou County, within the Jhuoshuei River, as the range and by researching the rationality of standards for verifying slopeland utilization limitations based on the orientation of land conservation. For areas having high disaster susceptibility and being unsuitable for agricultural uses, control classification implementations have been proposed, which may also serve as reference by the government while revising statutes regarding the utilization of slopelands.en_US
dc.description.tableofcontents摘要 I ABSTRACT III 目錄 VI 圖目錄 IX 表目錄 XII 第一章 前言 1 1.1研究緣起 1 1.2研究動機 2 1.3研究目的與流程 6 1.3.1 研究目的 6 1.3.2 研究流程 7 第二章 文獻回顧 9 2.1 山坡地農業土地土壤沖蝕程度分級 9 2.1.1 國內外山坡地土壤沖蝕程度法規 9 2.1.2國內外農業土地土壤沖蝕程度方法 16 2.2 山坡地農業土地利用分類等級 19 2.2.1 國內外山坡地農業土地分類等級法規 19 2.2.2 國內外山坡地農業土地分類等級方法 26 2.3 國土保育探討山坡地土地可利用限度 28 2.3.1 國土保育在山坡地土地可利用限度分類研究 28 2.3.2 山坡地易致災區劃定方法 29 第三章 濁水溪流域概述 31 3.1 地理位置 31 3.2 地形及地質 32 3.2.1 地形 32 3.2.2 地質 34 3.3 水文及水系 36 3.3.1 水文 36 3.3.2 水系 36 第四章 研究資料收集及特性說明 39 4.1 資料來源 39 4.2 資料特性說明 40 第五章 山坡地農業土地土壤沖蝕程度分級模式 48 5.1支持向量機理論 48 5.2山坡地農業土壤沖蝕程度因子 52 5.2.1通用土壤沖蝕公式 52 5.2.2 山坡地農業土壤沖蝕程度因子 53 5.3 篩選樣區資料及材料 61 5.3.1 樣區土地基本概述 61 5.3.2 山坡地農業土壤沖蝕程度因子分析 62 5.3.3 樣區訓練及測試材料 67 第六章 山坡地土地可利用限度分類模式 70 6.1 山坡地土地可利用限度分類理論基礎及統計檢定 70 6.1.1 羅吉斯迴歸理論 70 6.1.2 羅吉斯迴歸統計檢定 75 6.2山坡地土地分類查定因子及檢定 76 6.2.1 山坡地土地分類查定因子概述 76 6.2.2 山坡地土地分類查定因子檢定 80 6.3 篩選樣區資料及材料 83 6.3.1 樣區查定土地基本概述 83 6.3.2 山坡地土地分類查定因子分析 84 6.3.3 樣區訓練及測試材料 89 第七章 國土保育導向劃定山坡地易致災區分析模式暨探討合理坡地利用 91 7.1 研究理論基礎 91 7.1.1羅吉斯迴歸 91 7.1.2 群集分析 91 7.2 山坡地易致災區影響因子概述 93 7.3 山坡地易致災區影響因子篩選分析 102 7.3.1 主成份分析理論 102 7.3.2 山坡地易致災區影響因子篩選分析 104 7.4 易致災區影響因子分析及訓練材料 111 7.4.1 易致災區影響因子分析 111 7.4.2 研究區訓練材料 122 第八章 結果與討論 124 8.1山坡地農業土地土壤沖蝕程度分級模式 124 8.2山坡地土地可利用限度分類模式 129 8.3 山坡地易致災潛勢區分析模式 132 8.4 以國土保育導向探討現行山坡地土地可利用限度 137 第九章 結論與建議 142 參考文獻 144zh_TW
dc.language.isoen_USzh_TW
dc.publisher水土保持學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-3001201216434200en_US
dc.subjectSlopeland Utilization Limitationen_US
dc.subject山坡地土地可利用限度zh_TW
dc.subjectLand Conservationen_US
dc.subjectSoil Erosion Degreeen_US
dc.subjectSupport Vector Machineen_US
dc.subjectLogistic Regressionen_US
dc.subjectDisaster-prone areaen_US
dc.subjectCluster Analysisen_US
dc.subject國土保育zh_TW
dc.subject土壤沖蝕程度zh_TW
dc.subject支持向量機zh_TW
dc.subject羅吉斯迴歸zh_TW
dc.subject易致災區zh_TW
dc.subject群集分析zh_TW
dc.title以國土保育觀點探討台灣合理坡地利用之研究zh_TW
dc.titleA Study on Rational Slopeland Classification and Use for Land Conservation in Taiwanen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:水土保持學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.