Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35407
DC FieldValueLanguage
dc.contributor陳信吉zh_TW
dc.contributor張家豪zh_TW
dc.contributor盛中德zh_TW
dc.contributor謝禮丞zh_TW
dc.contributor.advisor鄭經偉zh_TW
dc.contributor.authorChen, Jhih-Weien_US
dc.contributor.author陳志偉zh_TW
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-06T07:52:08Z-
dc.date.available2014-06-06T07:52:08Z-
dc.identifierU0005-2508200623395900zh_TW
dc.identifier.citation[1] 王子綺 。2004。行走功能性肌力訓練應用於改善慢性期中風患者步態表現之成效探討。碩士論文。桃園,長庚大學復健科學研究所。 [2] 官大紳。1996。中風病人的步態分析。碩士論文。台南,國立成功大學醫學工程學系。 [3] 林育志。1996。 使用三種不同外部標記的下肢步態運動學和動力學之比較 。碩士論文。台南,國立成功大學醫學工程學系。 [4] 陳立元。 1996。在跑步機上後退步態的力學及肌電圖分析。碩士論文。台中 ,中山醫學院醫學研究所。 [5] 常文駿 。2001。鞋底弧形結構對長短腳與正常者在步態及足底壓力上的影響。碩士論文。台北,國立台灣科技大學工業管理系。 [6] 游家源。2001。滑倒時步態平衡反應之生物力學研究。博士論文。台南,國立成功大學醫學工程學系。 [7] 楊啟新。1987。 正常步態資料之建立。碩士論文。台南, 國立成功大學工程科學研究所。 [8] 楊志鴻 。1994。臺灣正常兒童及年輕人步態之研究。碩士論文。台南, 國立成功大學醫學工程學系。 76 [9] 彭慎翔。 1998。發展性髖關節發育不良病童的髖關節中心位置與步態分析。碩士論文。台南,國立成功大學醫學工程學系。 [10] Downey CA.Physical Therapy Department:Observational Gait Analysis Handbook.1989;5. [11] Affatato S, Toni A. Leg length mea1surement: a new method to assure the correct leg length in total hip arthroplasty. Med Eng Phys 2000;22:435-439. [12] Bal BS. A technique for comparison of leg lengths during total hip replacement. Am J Orthop 1996;25(1):61-62. [13] Clarke GR. Unequal leg length: an accurate method of detection and some clinical results. Rheum Phys Med 1972;11:385-390. [14] D’Aubigne RM, Duboussed J. Surgical correction of large leg length discrepancies in the lower extremity of children and adults- an analysis of twenty consecutive cases. J Bone Joint Surg Am 1968;53:61-69. [15] Friberg O. Clinical symptoms and biomechanics of lumbar spine and hip joint in leg length inequality. Spine 1983;8(6):643-651. [16] Giles LGF, Taylor JR. Low-back pain associated with leg length inequality. Spine 1981;6(5):510-521. [17] Gofton JP. Studies in osteoarthrosis of hip and leg length disparity. Canadian Med Assoc J 1971;104:791-799. [18] Gofton JP. Persistent low back pain and leg length disparity. J Rheum 1985;12(4):747-750. 77 [19] Gross RH. Leg length discrepancy: How much is too much? Orthopedics 1978;1(4):307-310. [20] Guichet JM, Spivak JM, Trouilloud P, Grammont PM. Lower limb-length discrepancy. An epidemiologic study. Clin Orthop Relat Res 1991;272:235-241. [21] Gurney B. Leg length discrepancy. Gait Posture 2002;15:195-206. [22] Hoikka V, Ylikoski M, Tallroth K. Leg-length inequality has poor correlation with lumbar scoliosis. A radiological study of 100 patients with chronic low-back pain. Arch Orthop Trauma Surg 1989;108(3):173-175. [23] Janice J. Eng,David A. Winter .Kinetic analysis of the lower limbs during walking:What information can be gained from a three –dimensional model?J. Biomechanical 1995;28:753-758 [24] Kit M Song ,Suzanne E Halliday ,David G Little.The effect of limb –length discrepancy on gait.Journal of Bone and Joint Surgery 1997;97:1690-1698. [25] Liu XC, Fabry G, Molenaers G, Lammens J, Moens P. Kinematic and kinetic asymmetry in patients with leg-length discrepancy. J Pediatr Orthop 1998;18:187-189. [26] Lutz Vogt, Martin Portscher, Kirsten Brettmann, Klaus Pfeifer, Winfried Banzer.Cross-validation of marker configurations to measure pelvic kinematic in gait. Gait and Posture 2003;18:178-184. [27] Morscher E. Etiology and pathophysiology of leg length discrepancies. Prog Orthop Surg 1977;1:9-19. 78 [28] Manohar, M.P. and Augustus,A.W.(2001) “Biomechanics in the musculoskeletal system” 1,1-3 p6 [29] M.Walsh, P.Connoly, A.Jenkinson, T.O’Brien.Leg length discrepancy-an experimental study of compensatory changes in three dimensions using gait analysis.Gait and Posture 2000;12:156-161. [30] Papioannou T, Stokes I, Kenwright J. Scoliosis associated with limb-length inequality. J Bone Joint Surg Am 1982;64(1):559-562. [31] Rothenberg RJ. Rheumatic disease aspects of leg length inequality. Semin Arth Rheum 1988;17(3):196-205. [32] Subotnick SI. Limb length discrepancies of the lower extremity (the short leg syndrome). J Orthop Sports Phys Ther 1981;3:11-15. [33] Woerman AL, Binder-MacLeod SA. Leg length discrepancy assessment: accuracy and precision in five clinical methods of evaluation. J Orthop Sports Phys Ther 1984;5:230-239. [34] Young RS, Andrew PD, Cummings GS. Effect of simulating leg length inequality on pelvic torsion and trunk mobility. Gait Posture 2000;11:217-223.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/35407-
dc.description.abstract摘要 本研究利用vicon mx system和WORKSTATION 5.0擷取功能性長短腿患者及正常個體(subject)之步態資料,並利用模擬軟體ADAMS及人體模組LifeMod,來建立人體模型並模擬正常個體和功能性長短腿病患(FLLD patient)步態。由實驗發現功能性長短腿病患的步態(the gait of FLLD)有不對稱(asymmetric)的現象。功能性長短腿患者,在中立期時(midstance)其長腿側在矢狀面(sagital)上之髖關節力矩(moment)比短腿側多出0.2N-m/kg。但於冠狀面之髖關節力矩為短腿側比長腿側多出0.6 N-m/kg。擺動期長腿側膝關節(knee)彎曲(flexion)角度也比短腿側多出10°,冠狀面上之髖關節內收角度比短腿側多出3°。因此功能性長短腿患者之步態與正常個體比較,功能性長短腿患者步態較不對稱,其長腿側力矩較大,而正常個體其步態較對稱,其髖關節及膝關節之力矩於矢狀面及冠狀面差異也較小。zh_TW
dc.description.abstractAbstract The study made use of computer hardware: vicon mx system and software :workstatiom 5.0 to pick up the gait data, from the normal subject and patients of functional leg length discrepancy(FLLD). This research used the simulate software :ADAMS and LifeMOD to establish the model and simulate the gait. The results represented the patients of FLLD have an asymmetric gait . At midstance, the FLLD patients' hip joint moment of longer limb in sagital plane is 0.2N-m/kg higher than opposite one. However, the hip joint moment of shorter limbs in frontal planes are 0.6N-m/kg higher than opposite ones. At swing phase, when knee flexion, the longer side joint have 10 higher than shorter side, and more than 3 adduction in frontal plane. Hence, comparing the gait of FLLD with normal subjects; we found the gaits of FLLD are more asymmetric and had a larger moment on the longer limb. The hip and the knee joint moment of normal subjects on sagital and frontal planes are smaller than FLLD one's.en_US
dc.description.tableofcontents目錄 摘要..............................................i 表目錄............................................v 圖目錄...........................................vi 一、 前言........................................1 1.1 研究背景................................1 1.2 研究動機................................2 1.3 研究目的................................3 二、 文獻探討....................................4 2.1 長短腿................................4 2.2 步態相關文獻..........................6 三、 理論分析...................................17 3.1 步態分析...............................17 3.2 元件設定...............................19 3.3 關節夾角-尤拉角的計算..................22 3.4 動力學.................................25 3.5 接觸力.................................27 iv 四、 研究設備與方法.............................30 4.1 研究設備.................................30 4.2 研究方法與步驟...........................34 五、 結果與討論.................................38 5.1 不對稱步態時下肢關節生物力學狀態.......38 5.1.1三關節之三維力矩趨勢...................39 5.1.2三關節於三平面上之活動角度.............45 5.2 對稱步態時下肢關節生物力學狀態........51 5.2.1三關節之三維力矩趨勢 ..................51 5.1.2三關節於三平面上之活動角度.............57 5.3 對稱步態及不對稱步態之比較.............63 六、 結論與建議 ................................72 6.1 研究結論...............................72 6.2 研究建議...............................74 參考文獻.........................................75 v 表目錄 表5-1功能性長短腿患者之關節角度..................71 表5-2正常個體之關節角度..........................71 vi 圖目錄 圖2-1髖關節於冠狀面上之力矩趨勢...................14 圖2-2髖關節於橫斷面上之力矩趨勢...................14 圖2-3髖關節於矢狀面上之力矩趨勢...................14 圖2-4膝關節於冠狀面上之力矩趨勢...................15 圖2-5膝關節於橫斷面上之力矩趨勢...................15 圖2-6膝關節於矢狀面上之力矩趨勢...................15 圖2-7踝關節於冠狀面上之力矩趨勢...................16 圖2-8踝關節於橫斷面上之力矩趨勢...................16 圖2-9踝關節於矢狀面上之力矩趨勢...................16 圖3-1步態週期..................................18 圖3-2人體座標方向定圖..........................21 圖3-3 旋轉軸順序...............................22 圖3-4下肢各關節之力和力矩.........................25 圖3-5動力學算計算流程圖........................26 圖3-6橢圓體-接觸表面...........................29 圖3-7人體腳掌部分的橢圓體接觸元件..............29 圖4-1 LifeMOD生物力學模組操作介面與本研究建立之模型..............................................32 vii 圖4-2反光球位置配置圖............................36 圖4-3模擬分析流程圖..............................37 圖5-1不對稱步態之左下肢三關節矢狀面上之力矩趨勢圖39 圖5-2不對稱步態之右下肢三關節矢狀面上之力矩趨勢圖40 圖5-3不對稱步態之左下肢三關節橫斷面上之力矩趨勢圖41 圖5-4不對稱步態之右下肢三關節橫斷面上之力矩趨勢圖42 圖5-5不對稱步態之左下肢三關節冠狀面上之力矩趨勢圖43 圖5-6不對稱步態之右下肢三關節冠狀面上之力矩趨勢圖44 圖5-7髖關節於矢狀面上之活動角度..................46 圖5-8髖關節於橫斷面上之活動角度..................46 圖5-9髖關節於冠狀面上之活動角度..................47 圖5-10膝關節於矢狀面上之活動角度.................47 圖5-11膝關節於橫斷面上之活動角度.................48 圖5-12膝關節於冠狀面上之活動角度.................48 圖5-13踝關節於矢狀面上之活動角度.................49 圖5-14踝關節於橫斷面上之活動角度.................49 圖5-15踝關節於冠狀面上之活動角度.................50 圖5-16對稱步態之左下肢三關節矢狀面上之力矩趨勢圖51 圖5-17對稱步態之右下肢三關節矢狀面上之力矩趨勢圖52 viii 圖5-18對稱步態之左下肢三關節橫斷面上之力矩趨勢圖53 圖5-19對稱步態之右下肢三關節橫斷面上之力矩趨勢圖54 圖5-20對稱步態之左下肢三關節冠狀面上之力矩趨勢圖55 圖5-21對稱步態之右下肢三關節冠狀面上之力矩趨勢圖56 圖5-22髖關節於矢狀面上之活動角度................58 圖5-23髖關節於橫斷面上之活動角度................58 圖5-24髖關節於冠狀面上之活動角度................59 圖5-25膝關節於矢狀面上之活動角度................59 圖5-26膝關節於橫斷面上之活動角度................60 圖5-27膝關節於冠狀面上之活動角度................60 圖5-28踝關節於矢狀面上之活動角度................61 圖5-29踝關節於橫斷面上之活動角度................61 圖5-30踝關節於冠狀面上之活動角度................62 圖5-31髖關節之矢狀面力矩.........................66 圖5-32髖關節之橫斷面力矩.........................66 圖5-33髖關節之冠狀面力矩.........................67 圖5-34膝關節之矢狀面力矩.........................67 圖5-35膝關節之橫斷面力矩.........................68 圖5-36髖關節之冠狀面力矩.........................68 ix 圖5-37踝關節之矢狀面力矩.........................69 圖5-38踝關節之橫斷面力矩.........................69 圖5-39踝關節之冠狀面力矩.........................70zh_TW
dc.language.isoen_USzh_TW
dc.publisher生物產業機電工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508200623395900en_US
dc.subjectgait analysisen_US
dc.subject步態分析zh_TW
dc.subjectLLD(leg length discrepancy)en_US
dc.subjectLifemMODen_US
dc.subject長短腿zh_TW
dc.subjectLifeMODzh_TW
dc.title功能性長短腿之生物力學效應模擬與分析zh_TW
dc.titleSimulation and Analysis for Functional Leg Length Discrepancy Biomechanical effects.en_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:生物產業機電工程學系
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.