Please use this identifier to cite or link to this item:
標題: 微波輔助生質柴油轉酯化技術之探討
Investigation of Microwave Assisted Transesterification of Biodiesel
作者: 陳峻榮
Chen, Chun-Rong
關鍵字: Transesterification
Microwave-Assisted Transesterification
出版社: 生物產業機電工程學系所
引用: 參考文獻 1. 鄭一鳴、馬聿安、陳志瑋、黃永勝、陳俊明、尤瓊琦。2009. 微波輔助萃取微藻類油脂技術探討。生物機電與農機科技論文發表:933-936。 2. 黃天洋。2010。黃豆油連續式微波萃取技術之探討。大專學生參與專題研究計畫研究成果報告, 行政院國家科學委員會, 台北。 3. 陳順宇、鄭碧娥。2002。實驗設計-第12章 反應曲面法。華泰出版社:1-25。 4. 蔡迪洋。2010。反應區面法應用於廢棄炸油產製生質柴油之最適預酯化製程探討。 5. Ali, Y., M. A. Hanna, and L. I. Leviticus. 1995. Emissions and power characteristics of diesel engines on methyl soyate and diesel fuel blends. Bioresource Technology 52(2):185-195. 6. Antonio, C., and R. T. Deam. 2007. Can "microwave effects" be explained by enhanced diffusion? Physical Chemistry Chemical Physics 9(23):2976-2982. 7. Azcan, N., and A. Danisman. 2007. Alkali catalyzed transesterification of cottonseed oil by microwave irradiation. Fuel 86(17-18):2639-2644. 8. Azcan, N., and A. Danisman. 2008. Microwave assisted transesterification of rapeseed oil. Fuel 87(10-11):1781-1788. 9. Banerjee, A., and R. Chakraborty. 2009. Parametric sensitivity in transesterification of waste cooking oil for biodiesel production--A review. Resources, Conservation and Recycling 53(9):490-497. 10. Barbosa, S. L., M. J. Dabdoub, G. R. Hurtado, S. I. Klein, A. C. M. Baroni, and C. Cunha. 2006. Solvent free esterification reactions using Lewis acids in solid phase catalysis. Applied Catalysis A: General 313(2):146-150. 11. Berchmans, H. J., and S. Hirata. 2008. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresource Technology 99(6):1716-1721. 12. Box, G. E. P., and J. S. Hunter. 1957. Multi-Factor Experimental Designs for Exploring Response Surfaces. The Annals of Mathematical Statistics 28(1): 195-241. 13. Bulent Koc, A. 2009. Ultrasonic monitoring of glycerol settling during transesterification of soybean oil. Bioresource Technology 100(1):19-24. 14. Canakci , M., and J. Van Gerpen. 1999. Biodiesel production via acid catalysis. No. 5. American Society of Agricultural Engineers, St. Joseph, MI, ETATS-UNIS. 15. Chang, D., J. Van Gerpen, I. Lee, L. Johnson, E. Hammond, and S. Marley. 1996. Fuel properties and emissions of soybean oil esters as diesel fuel. Journal of the American Oil Chemists'' Society 73(11):1549-1555. 16. Colucci, J., E. Borrero, and F. Alape. 2005. Biodiesel from an alkaline transesterification reaction of soybean oil using ultrasonic mixing. Journal of the American Oil Chemists'' Society 82(7):525-530. 17. Cravotto, G., L. Boffa, S. Mantegna, P. Perego, M. Avogadro, and P. Cintas. 2008. Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrasonics Sonochemistry 15(5):898-902. 18. Demirbas, A. 1998. Fuel properties and calculation of higher heating values of vegetable oils. Fuel 77(9-10):1117-1120. 19. Demirbas, A. 2009. Progress and recent trends in biodiesel fuels. Energy Conversion and Management 50(1):14-34. 20. Deng, X., Z. Fang, and Y.-h. Liu. 2010. Ultrasonic transesterification of Jatropha curcas L. oil to biodiesel by a two-step process. Energy Conversion and Management 51(12):2802-2807. 21. Diasakou, M., A. Louloudi, and N. Papayannakos. 1998. Kinetics of the non-catalytic transesterification of soybean oil. Fuel 77(12):1297-1302. 22. El Sherbiny, S. A., A. A. Refaat, and S. T. El Sheltawy. 2010. Production of biodiesel using the microwave technique. Journal of Advanced Research 1(4):309-314. 23. Fabbri, D., V. Bevoni, M. Notari, and F. Rivetti. 2006. Properties of a potential biofuel obtained from soybean oil by transmethylation with dimethyl carbonate. Fuel 86(5-6):690-697. 24. Goff, M., N. Bauer, S. Lopes, W. Sutterlin, and G. Suppes. 2004. Acid-catalyzed alcoholysis of soybean oil. Journal of the American Oil Chemists'' Society 81(4):415-420. 25. Graboski, M. S., and R. L. McCormick. 1998. Combustion of fat and vegetable oil derived fuels in diesel engines. Progress in Energy and Combustion Science 24(2):125-164. 26. Haas, M., K. Wagner, W. Marmer, and T. Foglia. 2004. An effective method for the production of fatty acid esters from vegetable oils. Journal of the American Oil Chemists'' Society 81(1):83-89. 27. Hanh, H. D., N. T. Dong, K. Okitsu, R. Nishimura, and Y. Maeda. 2009. Biodiesel production through transesterification of triolein with various alcohols in an ultrasonic field. Renewable Energy 34(3):766-768. 28. Helwani, Z., M. R. Othman, N. Aziz, W. J. N. Fernando, and J. Kim. 2009. Technologies for production of biodiesel focusing on green catalytic techniques: A review. Fuel Processing Technology 90(12):1502-1514. 29. Hernando, J., P. Leton, M. P. Matia, J. L. Novella, and J. Alvarez-Builla. 2007. Biodiesel and FAME synthesis assisted by microwaves: Homogeneous batch and flow processes. Fuel 86(10-11):1641-1644. 30. Hidekl, F., A. KONDO, and H. NODA. 2001. Biodiesel Fuel Production by Transesterification of Oils. J. BIOSCI. BIOENG 92:405-416 31. Hsiao, M.-C., C.-C. Lin, Y.-H. Chang, and L.-C. Chen. 2010. Ultrasonic mixing and closed microwave irradiation-assisted transesterification of soybean oil. Fuel 89(12):3618-3622. 32. Jain, S., and M. P. Sharma. 2010. Kinetics of acid base catalyzed transesterification of Jatropha curcas oil. Bioresource Technology 101(20):7701-7706. 33. Jansri, S., S. B. Ratanawilai, M. L. Allen, and G. Prateepchaikul. 2011. Kinetics of methyl ester production from mixed crude palm oil by using acid-alkali catalyst. Fuel Processing Technology 92(8):1543-1548. 34. Jin, Q., F. Liang, H. Zhang, L. Zhao, Y. Huan, and S. Daqian. 1999. Application of microwave techniques in analytical chemistry. TrAC Trends in Analytical Chemistry 18(7):479-484. 35. Knothe, G. 2005. Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Processing Technology 86(10):1059-1070. 36. Koc, A. B., and E. H. McKenzie. 2010. Effects of ultrasonication on glycerin separation during transesterification of soybean oil. Fuel Processing Technology 91(7):743-748. 37. Kumar, D., G. Kumar, Poonam, and C. P. Singh. 2010. Ultrasonic-assisted transesterification of Jatropha curcus oil using solid catalyst, Na/SiO2. Ultrasonics Sonochemistry 17(5):839-844. 38. Kumar Tiwari, A., A. Kumar, and H. Raheman. 2007. Biodiesel production from jatropha oil (Jatropha curcas) with high free fatty acids: An optimized process. Biomass and Bioenergy 31(8):569-575. 39. Laforgia, D., and V. Ardito. 1995. Biodiesel fueled IDI engines: Performances, emissions and heat release investigation. Bioresource Technology 51(1):53-59. 40. Leung, D. Y. C., X. Wu, and M. K. H. Leung. 2010. A review on biodiesel production using catalyzed transesterification. Applied Energy 87(4):1083-1095. 41. Lidstrom, P., J. Tierney, B. Wathey, and J. Westman. 2001. Microwave assisted organic synthesis--a review. Tetrahedron 57(45):9225-9283. 42. Liu, K.-S. 1994. Preparation of fatty acid methyl esters for gas-chromatographic analysis of lipids in biological materials. Journal of the American Oil Chemists'' Society 71(11):1179-1187. 43. Ma, F., L. D. Clements, and M. A. Hanna. 1999. The effect of mixing on transesterification of beef tallow. Bioresource Technology 69(3):289-293. 44. Meher, L. C., D. Vidya Sagar, and S. N. Naik. 2006. Technical aspects of biodiesel production by transesterification--a review. Renewable and Sustainable Energy Reviews 10(3):248-268. 45. Miao, X., and Q. Wu. 2006. Biodiesel production from heterotrophic microalgal oil. Bioresource Technology 97(6):841-846. 46. Moss, G. P., P. A. S. Smith, and D. Tavernier. 1995. Glossary of class names of organic compounds and reactivity intermediates based on structure. Pure and Applied Chemistry 67(8-9):1307-1375. 47. Mudge, S. M., and G. Pereira. 1999. Stimulating the biodegradation of crude oil with biodiesel preliminary results. Spill Science & Technology Bulletin 5(5-6):353-355. 48. Nakpong, P., and S. Wootthikanokkhan. 2010. High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand. Renewable Energy 35(8):1682-1687. 49. Perin, G., G. Alvaro, E. Westphal, L. H. Viana, R. G. Jacob, E. J. Lenardao, and M. G. M. D''Oca. 2008. Transesterification of castor oil assisted by microwave irradiation. Fuel 87(12):2838-2841. 50. Peterson, C. L., G. Knothe, and J. G. Krahl. 2005. In The Biodiesel Handbook. AOCS Press. 51. Purdue, M. J., J. M. D. MacElroy, D. F. O''Shea, M. O. Okuom, and F. D. Blum. 2006. A comparative study of the properties of polar and nonpolar solvent/solute/polystyrene solutions in microwave fields via molecular dynamics. The Journal of Chemical Physics 125(11):114902. 52. Rajendra, M., P. C. Jena, and H. Raheman. 2009. Prediction of optimized pretreatment process parameters for biodiesel production using ANN and GA. Fuel 88(5):868-875. 53. Rashid, U., and F. Anwar. 2008. Production of biodiesel through optimized alkaline-catalyzed transesterification of rapeseed oil. Fuel 87(3):265-273. 54. Saka, S., and D. Kusdiana. 2001. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80(2):225-231. 55. Samios, D., F. Pedrotti, A. Nicolau, Q. B. Reiznautt, D. D. Martini, and F. M. Dalcin. 2009. A Transesterification Double Step Process -- TDSP for biodiesel preparation from fatty acids triglycerides. Fuel Processing Technology 90(4):599-605. 56. Schuchardt, U., R. Sercheli, and R. M. Vargas. 1998. Transesterification of vegetable oils: a review. Journal of the Brazilian Chemical Society 9:199-210. 57. Schumacher, L. G., S. C. Borgelt, and W. G. Hires. 1995. Fueling a Diesel Engine with Methyl-ester Soybean Oil. Applied Engineering in Agriculture 11(1):37-40. 58. Speidel, H. K., R. L. Lightner, and I. Ahmed. 2000. Biodegradability of new engineered fuels compared to conventional petroleum fuels and alternative fuels in current use. Applied biochemistry and biotechnology 1189: 879-897. 59. Srivastava, A., and R. Prasad. 2000. Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews 4(2):111-133. 60. Venkatesh Kamath, H., I. Regupathi, and M. B. Saidutta. 2011. Optimization of two step karanja biodiesel synthesis under microwave irradiation. Fuel Processing Technology 92(1):100-105. 61. Zhang, J., and L. Jiang. 2008. Acid-catalyzed esterification of Zanthoxylum bungeanum seed oil with high free fatty acids for biodiesel production. Bioresource Technology 99(18):8995-8998.
摘要: The purpose of this study was aimed at developing a microwave- assisted transesterification system of biodiesel. The research first conducted and compared different oil transesterification methods such as traditional water-bath heating, ultrasound-assisted and microwave-assisted. The experimental results obtained showed that under 3 min of transesterification processing, the microwave-assisted method was the best with its transesterification conversion rate up to 70.19% while the traditional were only 46.33 and 51.30%, respectively. The microwave-assisted method demonstrated significant improvement of the ability of oil transesterification. Using the microwave-assisted method of pre-esterification test with four initial free fatty acid contents of 3,5,10and15%,the experimental results obtained showed that under 4 min of pre-esterification processing, the conversion rate of free fatty acid of each set reached saturated condition and were between 49.06 and 58.83% at 3 min of microwave irradiation. At the mean time, the set with 3% of initial free fatty acid was reduced to 1.3%,and the result also showed that the microwave irradiation performed high efficiency in oil pre-esterification. During the multistage microwave-assisted pre-esterification test with 15% of the initial free fatty acid, the experimental results obtained showed that the conversion rate of free fatty acid was up to 74.93% at the third stage. It also expressed that the pre-esterificated process with microwave-assisted could effectively reduce the free fatty acid content in oil and could fit the requirement of low free fatty acid in oil for the further alkaline-catalyzed transesterification. In this study, microwave-assisted transesterification system based on the previous fundamental tests and parameters obtained was built. The optimal condition of the system was obtained using the two-factor Response Surface Method (RSM). The experimental results obtained showed that a second order regression equation with coefficient of determination R2 of 95%, and the optimal condition of microwave irradiation time 3 min 20 sec and catalyst amount 1.1% (w/w) with 73% of transesterification was also found. Finally, an automated microwave-assisted transesterification system combined with an evaporated condensation unit and the pressure control function was set up to conduct a single feed operation of oil transesterification. The experimental results demonstrated that a stable reaction phenomenon of the system was obtained and the optimal conversion rate of oil transesterification was also maintained. In the future, the results of pre-esterification previously obtained could be combined in a system used for the oil transesterification with high free fatty acid, and the results obtained in this study could also provide for the reference of related industries.
本研究旨在建立一微波輔助生質柴油轉酯系統,研究首先進行多種輔助油脂轉酯方式比較試驗,即傳統水浴加熱、超音波與微波輔助方式,結果獲致當微波輔助酯化時間設定為3min時,可有最佳之油脂酯轉化率,達70.19%,於相同處理時間下,傳統水浴與超音波輔助二組,其酯轉化率僅分別為46.33%與51.30%,顯示微波輔助組可顯著提高油脂酯轉化效率。此外以初始游離脂肪酸含量為3、5、10及15%之油脂進行微波輔助預酯化1~4min試驗,以探討其輔助降低游離脂肪酸含量之效率,結果獲致轉化率於微波照射3min時,皆可達49.06~58.83%,其中初始游離脂肪酸含量為3%之油脂,經3min試驗後,可降低至1.3%,顯示微波輔助預酯化亦具高預酯化效率;當進一步以初始游離脂肪酸含量為15%之油脂,進行多級預酯化試驗,結果獲致在第三級時,轉化率可達74.93%,顯示微波輔助方式配合多級處理,可有效降低高游離脂肪酸油脂中之游離脂肪酸含量,亦可符合下一階段鹼催化轉酯之需求。本研究依上述各試驗所獲致之參數建置一微波輔助生質柴油轉酯系統,並以微波照射時間與觸媒量二因子設計最佳化參數油脂酯轉化率試驗,試驗結果反應曲面法(Response Surface Method, RSM)獲致一二階迴歸方程式,R2達0.95,其於微波照射時間3min 20sec與觸媒量1.1%(w/w)時,可獲致最佳之預測油脂酯轉化率達73%。 試驗最終係結合上述試驗所獲致之結果建置一自動化微波輔助轉酯系統進行單次進料轉酯化運轉,且進一步設計減壓濃縮冷凝,試驗結果獲致系統內部反應穩定,亦可達最佳化試驗之酯轉化率,未來可結合預酯化之結果,建置具游離脂肪酸油脂預酯化功能之系統,而相關結果亦可以提供相關業者應用參考。
其他識別: U0005-2208201116365900
Appears in Collections:生物產業機電工程學系



Show full item record
TAIR Related Article

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.