Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3545
標題: 層狀奈米有機/無機混成材料之製備與應用:蒙脫土與層狀雙氫氧化物
Designed Organic-Inorganic Nanohybrids from Layered Clays: Montmorillonite and Layered Double Hydroxides
作者: 莊宗原
Juang, Tzong-Yuan
關鍵字: Amidoacid
聚醚胺
Dendrimer
Epoxy
Intercalation
Layered double hydroxides
Montmorillonite
Nanocomposite
Nanohybrid
Polyoxypropylene
Protein
規則樹枝狀高分子
環氧樹脂
插層
層狀雙氫氧化物
蒙脫土
奈米混成材料
奈米複合材料
蛋白質
出版社: 化學工程學系所
引用: 1. Colvin, V. L. Nat. biotechnol. 2003, 21, 1166. 2. Pileni, M. P. Nat. Mater. 2003, 2, 145. 3. Discher, D. E.; Kamien, R. D. Nature 2004, 430, 519. 4. Niemeyer, C. M. Science 2002, 297, 62. 5. Lin, J. J.; Chu, C. C.; Chiang, M. L.; Tasi, W. C. Adv. Mater. 2006, 18, 3248. 6. Tomalia, D. A. Materials Today 2005, 8, 34. 7. Thostensona, E. T.; Ren, Z.; Choua, T. W. Composites Science and Technology 2001, 61, 1899. 8. Zanetti, M., Lomakin, S.; Camino, G. Macromal. Mater. Eng. 2000, 279, 1. 9. Glael, H. J.; Bauer, F.; Ernst, H.; Findeisen, M.; Hartmann, E.; Langguth, H.; Mehnert, R.; Schubert, R. Macromal. Chem. Phys. 2000, 201, 2765. 10. Liu, W.; Gan, J.; Papiernik, S. K.; Yates, S. R. J. Agric. Food Chem. 2000, 48, 1935. 11. Schulz, J. C.; Warr, G. G. Langmuir 2000, 16, 2995. 12. Fendler, J. H. Chem. Mater. 1996, 8, 1616. 13. Eckle, M.; Decher, G. Nano Lett. 2001, 1, 45. 14. Ozsoz, M.; Erdem, A.; Ozkan, D.; Kerman, K.; Pinnavaia, T. J. Langmuir 2003, 19, 4728. 15. Umemura, Y.; Yamagishi, A.; Schoonheydt, R.; Persoons, A.; Schryver, F. D. J. Am. Chem. Soc. 2002, 124, 992. 16. Occelli, M. L.; Olivier, J. P.; Perdigon-Melon, J. A.; Auroux, A. Langmuir 2002, 18, 9816. 17. Feng, J.; Hu, X.; Yue, P. L. Environ. Sci. Technol. 2004, 38, 269. 18. Guo, J.; Al-Dahhan, M. Ind. Eng. Chem. Res. 2003, 42, 2450. 19. Stackhouse, S.; Coveney, P. V.; Sandre, E. J. Am. Chem. Soc. 2001, 123, 11764. 20. Olphen, H. V. “Clay Colloid Chemistry” John Wiley, 1977. 21. Theng, B. K. G. “Formation and Properties of Clay-Polymer Complexes” Elsever, 1979. 22. Velde, B. “Introduction to Clay Minerals” Chapman Hall, 1992. 23. Theng, B. K. G.. “The Chemistry of Clay-Organic Reactions” ed. Wiley, J. 1966. 24. Gilman, J. W. Appl. Clay Sci. 1999, 15, 31. 25. Ogata, N.; Kawakage, S.; Ogihara, T. Polymer 1997, 38, 5115. 26. Krishnamarooti, R.; Vaia, R. A.; Giannelis, E. P. Chem. Mater. 1996, 8, 1728. 27. Kaviratna, P. D.; Pinnavaia, Thomas J.; Schroeder, P. A. J. Phys. Chem. Solids 1996, 57, 1897. 28. Chin, I.; Thurn-Albretcht, T.; Kim, H.; Russel, Th. P.; Wang, J. Polymer 2001, 42, 5947. 29. Gardner, E.; Huntoon, K. M.; Pinnavaia, T. J. Adv. Mater. 2001, 13, 1263. 30. Zhao, Z.; Tang, T.; Qin, Y.; Huang, B. Langmuir 2003, 19, 7157. 31. Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. J. Mater. Res. 1993, 8, 1179. 32. Usuki, A.; Hasegawa, N.; Kadoura, H.; Okamoto, T. Nano Lett. 2001, 1, 271. 33. Hasegawa, N.; Okamoto, H.; Kawasumi, M.; Usuki, A. J. Appl. Polym. Sci. 1999, 74, 3359. 34. Fu, X.; Qutubuddin, S. Polymer 2001, 42, 807. 35. Kawasumi, M.; Hasegawa, N.; Kato, M.; Usuki, A.; Okada, A. Macromolecules 1997, 30, 6333. 36. Hsueh, H. B.; Chen, C. Y. Polymer 2003, 44, 1151. 37. Morgan, A. B.; Gilman, J. W.; Jackson, C. L. Macromolecules 2001, 34, 2735. 38. (a) Hsueh, H. B.; Chen, C. Y. Polymer 2003, 44, 5275. (b) Ma, J.; Yu, Z. Z.; Zhang, Q. X.; Xie, X. X.; Mai, Y. W.; Luck, I. Chem. Mater. 2004, 16, 757. (c) Park, J. H.; Jana, S. C. Macromolecules 2003 36, 2758. 39. Horch, R. A.; Golden, T. D.; D''Souza, N. A.; Riester, L. Chem. Mater. 2002, 14, 3531. 40. Ray, S. S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539. 41. Imai, Y.; Nishimura, S.; Abe, E.; Tateyama, H.; Abiko, A.; Yamaguchi, A.; Aoyama, T.; Taguchi, H. Chem. Mater. 2002, 14, 477. 42. Alexandre, M.; Dubois, P. Mater. Sci. Eng., R: Rep. 2000, 28, 1. 43. Fu, X.; Qutubuddin, S. Mater. Lett. 2000, 42, 12. 44. Fu, X.; Qutubuddin, S. Polymer 2001, 42, 807. 45. Lin, J. J.; Cheng, I. J.; Wang, R.; Lee, R. J. Macromolecules 2001, 34, 8832. 46. Rives, V.; Ulibarri, M. A. Coord. Chem. Rev. 1999, 181, 61. 47. Rives, V. Mater. Chem. Phys. 2002, 75, 19. 48. Khan, A. I.; O'Hare, D. J. Mater. Chem. 2002, 12, 3191. 49. Aisawa, S.; Takahashi, S.; Ogasawara, W.; Umetsu, Y.; Narita, E. J. Solid State Chem. 2001, 162, 52. 50. Iyi, N.; Kurashima, K.; Fujita, T. Chem. Mater. 2002, 14, 583. 51. Meyn, M.; Beneke, K.; Lagaly, G. Inorg. Chem. 1990, 29, 5201. 52. Leroux, F.; Besse, J. P. Chem. Mater. 2001, 13, 3507. 53. Gaines, R. V.; Skinner, H. C. W.; Foord, E. E.; Mason, B.; Rosenzweig, A. “Dana's New Mineralogy”, 8th edn. Wiley, New York, 1997. 54. David, G. E.; Robert, C. T. S. Struct Bond 2006, 119, 1. 55. Choy, J. H.; Kwak, S. Y.; Park, J. S.; Jeong, Y. J.; Portier, J. J. Am. Chem. Soc. 1999, 121, 1399. 56. Choy, J. H.; Kwak, S. Y.; Jeong, Y. J.; Park, J. S. Angew. Chem. Int. Ed. 2000, 39, 4041. 57. Sels, B.; Vos, D. D. ; Buntinx, M.; Pierard, F. ; Mesmaeker, A. K. D.; Jacobs, P. Nature 1999, 400, 855. 58. Whilton, N. T.; Vickers, P. J.; Mann, S. J. Mater. Chem. 1997, 7, 1623. 59. Desigaux, L.; Belkacem, M. B.; Richard, P.; Cellier, J.; Léone, P.; Cario, L.; Leroux, F.; Taviot-Guého, C.; Pitard, B. Nano Letters 2006, 6, 199. 60. Li, B.; He, J.; Evans, D. G.; Duan, X. Int. J. Pharm. 2004, 287, 89. 61. DeMattei, C. R.; Huang, B.; Tomalia, D. A. Nano Lett. 2004, 4, 771. 62. Helms B.; Meijer E. W. Science, 2006, 313, 929. 63. Yang, H. B.; Das, N.; Huang, F.; Hawkridge, A. M.; Muddiman, D. C.; Stang, P. J. J. Am. Chem. Soc. 2006, 128, 10014. 64. Fréchet, J. M. J.; Tomalia, D. A. “Dendrimer and Other Dendritic Polymers” Wiley, 2001. 65. Tomalia, D. A.; Dewald, J. R.; Hall, M. R.; Martin, S. J.; Smith, P. B. Preprints of the 1st SPSJ International Polymer Conference, Society of Polymer Science Japan, Kyoto, 1984, p 65. 66. Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J. 1985, 17, 117. 67. Fréchet, J. M. J. J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 3713. 68. Hecht, S.; Fréchet, J. M. J. Angew. Chem. Int. Ed. 2001, 40, 74. 69. Fréchet, J. M. J.; Jiang, Y.; Hawker, C. J.; Philippides, A. E. Proc. IUPAC Int. Symp., Macromol. (Seoul) 1989, 19. 70. Hawker, C. J.; Fréchet, J. M. J. J. Am. Chem. Soc. 1990, 112, 7638. 71. Wooley, K. L.; Fréchet, J. M. J.; Hawker, C. J. Polymer 1994, 35, 4489. 72. Hawker, C. J.; Malmstrom, E.; Frank, C. W.; Kampf, J. P. J. Am. Chem. Soc. 1997, 119, 9903. 73. Mourey, T. H.; Turner, S. R.; Rubinstein, M.; Fréchet, J. M. J.; Hawker, C. J.; Wooley, K. L. Macromolecules 1992, 25, 2401. 74. Scott, R. W. J.; Wilson, O. M.; Crooks R. M. J. Phys. Chem. B 2005, 109, 692. 75. Jansen, J. F. G. A.; de Brabander van den Berg, E.; Meijer, E. W. Science 1994, 266, 1226. 76. Adronov, A.; Fréchet, J. M. J. Chem.Commun. 2000, 1701. 77. Grayson, S. M.; Fréchet, J. M. J. Chem. Rev. 2001, 101, 3819 78. Liu, M.; Kono, K.; Fréchet, J. M. J. J. Controlled Release 2000, 65, 121. 79. Tang, M. X.; Szoka, F. C. Gene Ther. 1997, 4, 823. 80. Malik, N.; Wiwattanapatapee, R.; Klopsch, R.; Lorenz, K.; Frey, H.; Weener, J. W.; Meijer, E. W.; Paulus, W.; Duncan, R. J. Controlled Release 2000, 65, 133. 81. Liu, M.; Fréchet, J. M. J. Pharm. Sci. Technol. Today 1999, 2, 393. 82. Haensler, J.; Szoka, Jr. F. C. Bioconjugate Chem. 1993, 4, 372. 83. Tang, M. X.; Redemann, C. T.; Szoka, Jr. F. C. Bioconjugate Chem. 1996, 7, 703. 84. Kukowska-Latallo, J. F.; Candido, K. A.; Cao, Z.; Nigavekar, S. S.; Majoros, I. J.; Thomas, T. P.; Balogh, L. P.; Khan, M. K.; Baker, Jr. J. R. Cancer Res. 2005, 65, 5317. 85. Smith, D. K. Chem.Commun. 2006, 34. 86. Tomalia, D. A.; Fréchet, J. M. J. J. Polym. Sci. Part A: Polym. Chem. 2002, 40, 2719. 87. Kostiainen, M. A.; Szilvay, G. R.; Smith, D. K.; Linder, M. B.; Ikkala O. Angew. Chem. Int. Ed. 2006, 45, 3538. 88. Hecht, S.; Fréchet, J. M. J. Angew. Chem. Int. Ed. 2001, 40, 74. 89. Ogata, N.; Kawakage, S; Ogihara, T. Polymer 1997, 38, 5115. 90. Lan, T.; Kaviratna, P. D.; Pinnavaia, T. J. J. Phys. Chem. Solids 1996, 57, 1005. 91. Gardner, E.; Huntoon, K. M.; Pinnavaia, T. J. Adv. Mater. 2001, 13, 1263. 92. Lin, J. J.; Cheng, I. J.; Wang, R. C.; Lee, R. J. Macromolecules 2001, 34, 8832. 93. Chou, C. C.; Shieu, F. S.; Lin, J. J. Macromolecules 2003, 36, 2187. 94. Lin, J. J.; Cheng, I. J.; Chou, C. C. Macromol. Rapid. Commun. 2003, 24, 492. 95. Pagano, M. A.; Forano, C.; Besse, J. P. Chem. Commun. 2000, 91. 96. Hibino, T.; Jones, W. J. Mater. Chem. 2001, 11, 1321. 97. Leroux, F.; Mariko, A. P.; Intissar, M.; ChauvieÁre, S. ; Forano, C.; Besse, J. P. J. Mater. Chem. 2001, 11, 105. 98. Fogg, A. M.; Rohl, A. L.; Parkinson, G. M.; O'Hare, D. Chem. Mater. 1999, 11, 1194. 99. Meyn, M.; Beneke, K.; Lagaly, G. Inorg. Chem. 1990, 29, 5201. 100. Lin, J. J.; Chang, Y. C.; Cheng, I. J. Macromol. Rapid. Commun. 2004, 25, 508. 101. Ogata, N.; Kawakage, S.; Ogihara, T. Polymer 1997, 38, 5115. 102. Vaia, R. A.; Sauer, B. B.; Tse, O. K.; Giannelis, E. P. J. Polym. Sci. Part B: Polym. Phys. 1997, 35, 59. 103. Marmur, A. J. Am. Chem. Soc. 2000, 122, 2120. 104. Triantafillidis, C. S.; LeBaron, P. C.; Pinnavaia, T. J. Chem. Mater. 2002, 14, 4088. 105. Gilman, J. W.; Jackson, C. L.; Morgan, A. B.; Harris, R., Jr.; Manias, E.; Giannelis, E. P.; Wuthenow, M.; Hilton, D.; Philips, S. H. Chem. Mater. 2000, 12, 1866. 106. Brown, J. M.; Curliss, D.; Vaia, R. A. Chem. Mater. 2000, 12, 3376. 107. Ishida, H.; Campbell, S.; Blackwell, J. Chem. Mater. 2000, 12, 1260. 108. Zhu, J.; Morgan, A. B.; Lamelas, F. J.; Wilkie, C. A. Chem. Mater. 2001, 13, 3774. 109. Lin, J. J., Chang, Y. C.; Cheng, I. J. Macromol. Rapid. Commun. 2004, 25, 508. 110. Lin, J. J.; Cheng, I. J.; Chu, C. C. Polymer Journal 2003, 35, 411. 111. Lin, J. J.; Juang, T. Y. Polymer 2004, 45, 7887. 112. Stevens, G. C.; Richardson, M. J. Polymer 1983, 24, 851. 113. Plazek, D. J.; Frund, Z. N. J. Polym. Sci. Polym. Phys. 1990, 28, 431. 114. Lin, J. J.; Chu, C. C.; Chou, C. C.; Shieu, F. S. Adv. Mater. 2005, 17, 301. 115. Wei, M.; Yuan, Q.; Evans, D. G.; Wang, Z.; Duan, X. J. Mater. Chem. 2005, 15, 1197. 116. Sue, H. J.; Gam, K. T.; Bestaoui, N.; Spurr, N.; Clearfield, A. Chem. Mater. 2004, 16, 242. 117. Wu, T. M.; Liu, C. Y. Polymer 2005, 46, 5621. 118. Giannelis, E. P. Adv. Mater. 1996, 8, 29. 119. Alexandre, M.; Dubois, P. Mater. Sci. Eng. 2000, 28, 1. 120. Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. Rev. 1999, 99, 1665. 121. Esfand, R.; Tomalia, D. A. Drug Discov. Today 2001, 6, 427. 122. Gillies, E. R.; Fréchet, J. M. J. J. Am. Chem. Soc. 2002, 124, 14137. 123. Kriesel, J. W.; Tilley, T. D. Adv. Mater. 2001, 13, 1645. 124. Robert, W. J. S.; Orla, M. W.; Oh, S. K.; Edward, A. K.; Richard, M. C. J. Am. Chem. Soc. 2004, 126, 15583. 125. Dahan, A.; Portnoy, M. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 235. 126. Zeng, F.; Zimmerman, S. C. Chem. Rev. 1997, 97, 1681. 127. Frankamp, B. L.; Boal, A. K.; Rotello, V. M. J. Am. Chem. Soc. 2002, 124, 15146. 128. Kim, C.; Lee, S. J.; Lee, I. H.; Kim, K. T.; Song, H. H.; Jeon, H. J. Chem. Mater. 2003, 15, 3638. 129. Ong, W.; Kaifer, A. E. Angew. Chem. Int. Ed. 2003, 42, 2164. 130. Ma, H.; Chen, B.; Sassa, T.; Dalton, L. R.; Jen, A. K. Y. J. Am. Chem. Soc. 2001, 123, 986. 131. Jeong, H. C.; Piao, M. J.; Lee, S. H.; Jeong, M. Y.; Kang, K. M.; Park, G.; Jeon, S. J.; Cho, B. R. Adv. Funct. Mat. 2004, 14, 64. 132. Wang, S.; Wang, X.; Li, L.; Advincula, R. C. J. Org. Chem. 2004, 69, 9073. 133. Plummer, C. J. G.; Garamszegi, L.; Leterrier, Y.; Rodlert, M.; Månson, J. A. E. Chem. Mater. 2002, 14, 486. 134. Costa, A. S.; Imae, T. Langmuir 2004, 20, 8865. 135. Costa, A. S.; Imae, T; Takagi, K.; Kikuta, K. Progr. Collid Polym. Sci. 2004, 128, 113. 136. Acosta, E. J.; Deng, Y.; White, G. N.; Dixon, J. B.; McInnes, K. J.; Senseman, S. A.; Frantzen, A. S.; Simanek, E. E. Chem. Mater. 2003, 15, 2903. 137. Tsai, C. C.; Juang, T. Y.; Dai, S. A.; Wu, T. M.; Su, W. C.; Liu, Y. L.; Jeng, R. J. J. Mater. Chem. 2006, 16, 2056. 138. Dai, S. A.; Juang, T. Y.; Chen, C. P.; Chang, H. Y.; Kuo, W. C.; Su, W. C.; Jeng, R. J. J. Appl. Poly. Sci., in press. 139. Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Jeng, R. J. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 682. 140. Broz, P.; Driamov, S.; Ziegler J.; Ben-Haim, N.; Marsch, S.; Meier, W.; Hunziker, P. Nano Lett. 2006, 6, 2349. 141. Scott, R. W. J.; Wilson, O. M.; Crooks, R. M. J. Phys. Chem. B 2005, 109, 692. 142. Lin, J. J.; Wei, J. C.; Juang, T. Y.; Tsai, W. C. Langmuir, DOI: 10.1021/la062013h. 143. Lin, J. J.; Chen, I. J.; Chou, C. C. Macromol. Rapid Commun. 2003, 24, 492. 144. Lvov, Y.; Ariga, K. I.; Ichinose, Kunitake, T. J. Am. Chem. Soc. 1995, 117, 6117. 145. (a) Liu, Y. L.; Hsu, C. Y.; Su, Y. H.; Lai, J. Y. Biomacromolecules 2005, 6, 368. (b) Mohammed, J.; Meziani; Sun, Y. P. J. Am. Chem. Soc. 2003, 125, 8015. 146. Wang, Q.; Gao, Q.; Shi, J. J. Am. Chem. Soc. 2004, 126, 14346. 147. Mikhaylova, M.; Kim, D. K.; Berry, C. C.; Zagorodni, A.; Toprak, M.; Curtis, A. S. G.; Muhammed, M. Chem. Mater. 2004, 16, 2344. 148. (a) Dumat, C.; Quiquampoix, H.; Staunton, S. Environ. Sci. Technol. 2000, 34, 2985. (b) Zhou, Y.; Hu, N.; Zeng, Y.; Rusling, J. F. Langmuir 2002, 18, 211. (c) Kelleher, B. P.; Oppenheimer, S. F.; Kingery, W. L.; Han, F. X.; Willeford, K. O.; Simpson, M. J.; Simpson, A. J. Langmuir 2003, 19, 9411. 149. Baron, M. H.; Revault, M.; Servagent-Noinville, S.; Abadie, J.; Quiquampoix, H. J. Colloid Interface Sci. 1999, 214, 319. 150. Causserand, C.; Kara, Y.; Aimar, P. J. Membr. Sci. 2001, 186, 165. 151. (a) De Cristofaro, A.; Violante, A. Appl. Clay Sci. 2001, 19, 59. (b) Naidja, A.; Huang, P. M.; Bollag, J. M. J. Mol. Catal. A: Chem. 1997, 115, 305. 152. Chou, C. C.; Chang, Y. C.; Chiang, M. L.; Lin, J. J. Macromolecules 2004, 37, 473. 153. Musale, D. A.; Kulkarni, S. S. J. Membr. Sci. 1997, 136, 13. 154. Cao, C. X.; Zhang, W.; Qin, W. H.; Li, S.; Zhu, W.; Liu, W. Anal. Chem. 2005, 77, 955. 155. (a) Gil, E. S.; Hudson, S. M. Prog. Polym. Sci. 2004, 29, 1173. (b) Mao, H.; Li, C.; Zhang, Y.; Bergbreiter, D. E.; Cremer, P. S. J. Am. Chem. Soc. 2003, 125, 2850.
摘要: 本論文中共分四個章節(Chapter 2 – Chapter 5),討論有機高分子經由離子交換反應插層改質層狀黏土(蒙脫土與層狀雙氫氧化物),經有機化改質黏土後之物理結構、化學性質,表面型態與其於複合及生物材料上之應用。 (1) 2001年林江珍老師實驗室首次利用商業化的有機型高分子界面活性劑Jeffamine® D4000與D2000改質蒙脫土,成功的將層間距分別擴展到92 Å與58 Å。本研究延伸天然陽離子交換型蒙脫土到人工合成陰離子交換型層狀雙氫氧化物,將不同分子量商業化聚醚胺(POP-amines)接上馬來酐後形成鹽類則為層狀雙氫氧化物之插層劑,當使用分子量為2200之插層劑POP2000-2MA於高壓反應器(120 oC)進行離子交換反應其層間距可達68 Å,層間距的增加亦隨分子量之增加,當POP4000-2MA為插層劑時可達最大92 Å,使親水性的層狀雙氫氧化物改質成親油性的奈米複合材料,隨插層劑之親油鏈段越強插層改質後之有機相容性越高,而親水性插層劑POE2000-2MA則傾向吸附於層狀表面(7.8 Å)。 (2) 利用上述有機化改質之層狀雙氫氧化物黏土(POP2000-2MA/LDH和POP400-3MA/LDH, 層間距68與27 Å ),提高其有機相容性與層間距離使環氧樹脂單體易於進入層間進行原位聚合,在未外加硬化劑的升溫控制條件下,利用不同比例的有機黏土使環氧樹脂自聚合成交聯網狀物,於TEM與XRD觀察下發現已成功製備出脫層型的環氧樹脂有機/無機奈米複合材料。 (3) 規則樹枝狀高分子是一種新穎的材料,具3度空間球狀或樹枝狀結構體。在此研究,利用具備反應選擇性(4-isocyanato-4 (3,3-dimethyl-2,4-dioxo-acetidino) diphenylmethane (MIA)為起始物,分別與胺類化合物交替反應以製備多代數之規則樹枝狀高分子材料(分子量為930到5975 g/mol);利用樹枝狀結構的高分子與黏土進行離子交換反應,進而將三個不同世代的規則樹枝狀高分子導入黏土層間,成功的將層間距分別擴展到38 Å, 77 Å與115 Å,使親水性的蒙脫土改質成親油性的奈米複合層狀材料,另外則以不同代數規則樹枝狀高分子研究以不同當量插層對分子在黏土層間中構形的轉變,當三個世代樹枝狀高分子莫爾數與黏土交換當量比值由0.25增加到1.0時,黏土層間距分別可由一代的19 Å增加到38 Å,二代的15 Å增加到77 Å及三代的14 Å增加到最大值115 Å,此部分研究將了解規則樹枝狀高分子於黏土層間之自行排列,並利用不同代數之規則樹枝狀高分子探討分子大小與形狀對層狀黏土插層機制之影響。 (4) 此部分延伸高層間距(>50 Å)的有機改質蒙脫土之應用,利用蒙脫土與有機高分子插層製備出不同空間大小之奈米容器,以提供不同型態之有機/無機奈米複合材料與生物高分子蛋白質作交互作用之研究。未改質之鈉-蒙托土(Na+-MMT)經由聚丙烯醚胺鹽(POP-amine)改質而得高層間距(53 Å)之高分子複合材料,經牛血清蛋白(BSA)進行離子交換再插層反應,可得到相對較高層間距(~62 Å)之生物有機/無機奈米混成材料,藉由XRD、TGA與TEM可證明牛血清蛋白進入層間。而使用未改質(12 Å)或低層間距之黏土(18 Å)進行插層改質反應,利用濃度效應一樣可使牛血清蛋白以吸附的形式進入層間(~62 Å)。故以逐步或直接插層反應程序提供一新方法使生物高分子進入矽酸鹽層間而不壓縮破壞其結構,此方法所得之生物高分子與層狀黏土之複合材料未來期可應用於藥物釋放或生物材料上。
In this work, four parts (Chapter 2 - Chapter 5) of studies involving the intercalation of polymeric surfactants into layered clay (sodium montmorillonite (Na+-MMT) and layered double hydroxides (LDH)) prepared by an ionic exchange reactions were included. These materials were further investigated in terms of physical properties, chemistry, morphology and applications in biomaterials and nanocomposites. (1) Previously, a highly dispersible organic MMT of 58 and 92 Å spacing by using poly(oxyalkylene)-amines as the intercalants has been prepared in Professor Lin's laboratories. LDH are a family of anionic clays which are significantly different from the commonly utilized aluminosilicate clays with respect to the presence of positive ion charges on the layer surface. Mg-Al LDHs were intercalated with various molecular-weight poly(oxypropylene)-bis-amidoacid salts (POP-acid), synthesized from polyoxyalkylene-diamines and maleic anhydride. The intercalation involves an ionic exchange reaction of LDHs at 120 oC and under N2 atmosphere in an autoclave to afford a series of organoclays with a maximal basal spacing of 92 Å, revealed by XRD and TEM analyses. The unusually wide interlayer spacing was ascribed to the self-alignment of the hydrophobic POP backbone in the layer confinement. In contrast, the intercalation of poly(oxyethylene)-bis-amidoacids (POE-acid) afforded a low basal spacing (7.8 Å) due to their oxyethylene-backbone interaction with the layered surface. The resultant POP- and POE-acid intercalated LDHs also exhibited different dispersing properties in toluene or water. Particularly, the organically-modified and space-enlarged hybrids with a proper amount of the embedded POPs possessed an amphiphilic property of lowering the toluene/water interfacial tension. (2) Epoxy nanocompoistes were prepared from a one-component epoxy system consisting of organophilic anionic clay and diglycidyl ether of bisphenol-A resin. The requisite organic clays were derived from the intercalation of Mg-Al LDH with the poly(oxypropylene)-bis-amindocarboxylic acid salts (POP-acid) (POP2000-2MA/LDH and POP400-3MA/LDH, 68 and 27 Å). At an elevated temperature, the organo-LDH enabled the initiation of the epoxy self-curing to form a crosslinked polymer network without additional curing agents. Among the screened organo-LDH, the spatially-expanded clay with the intercalation of hydrophobic POP-acid up to 68 Å XRD basal spacing was found to be suitable for finely dispersing in epoxy resins. Consequently, the organic diffusion and curing rendered the organoclays exfoliated into individual platelets which were observed by TEM and XRD analysis. (3) Dendrimers and hyperbranched polymers have aroused great interests because of their potential applications. Three generations of dendrons (G1, G2 and G3) with phenyl end-groups were intercalated into MMT layered silicates in dimethylformamide/water cosolvent. These dendrons synthesized via the convergent route were different in size and shape with molecular weights ranging from 930 to 5975 g/mol. XRD and high resolution transmission electron microscopy (HRTEM) indicate that the respective intercalations of MMT with G1, G2 and G3 dendrons exhibited self-assembly characteristics, and the interlayer spacings were 38, 77 and 115 Å for G1/MMT, G2/MMT and G3/MMT, respectively. Furthermore, the modified dendritic organo-clay could be well dispersed into organic solvents, such as DMF, due to the presence of hydrophobic dendritic molecules. Our results indicate that organic/inorganic hybrids resulting from the association of dendrons and inorganic layered silicate can be obtained not only by ionic exchange reaction, but possibly by a direct self-assembly route as well. Moreover, the preparation of dendron/MMT hybrids was investigated at different dendron/MMT molar ratios regarding the changes of interlayer distance. When the molar ratio is within the range of 0.25 ─ 1.0 cationic exchange capacity (CEC) equivalents, the d spacings increase from 19 Å to 38 Å for G1/MMT, 15 Å to 77 Å for G2/MMT and 14 Å to 115 Å for G3/MMT, revealing a conformation change of the intercalating dendrons. (4) Hybrids of the model BSA protein and layered silicate clay with d spacing of ~62 Å were prepared from either direct or stepwise intercalation. The pristine Na+-MMT was first modified by poly(oxypropylene)-amine (POP-amine) salts to a highly-expanded silicate (d spacing = 53 Å) which became accessible for BSA protein embedding. Subsequent substitution allowed the embedding of BSA into the layered MMT in an uncompressed conformation. The process of embedding large molecules into the silicate gallery provides a new method for synthesizing biomaterial/clay hybrids potentially useful in drug delivery or biomedical design.
URI: http://hdl.handle.net/11455/3545
其他識別: U0005-0301200715075600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0301200715075600
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.