請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/35452
標題: ORP及NO之線上監測應用於養殖廢水之PVA固定化系統
Application of on-line ORP and NO monitoring to PVA immobilized system treating aquaculture wastewater
作者: 陳雍傑
Chen, Yong-Jie
關鍵字: oxidation reduction potential
氧化還原電位
nitric oxide
nitrate breakpoint
ㄧ氧化氮
硝酸轉折點
出版社: 生物產業機電工程學系所
引用: 1. 林昀輝、陳文祥、吳建一、蔡政閔、陳國誠。2000。利用固定化微生物處理含酚水系統之動力學研究。第二十五屆廢水處理技術研討會論文集,135-139。 2. 吳建一、陳嘉仁、陳正坤、陳國誠。1998。固定化微生物在廢水處理程序之應用—間歇曝氣操作效率之探討。第二十三屆廢水處理技術研討會論文集,108-113。 3. 張鎮南、陳澤民、黃俊雄、林世祥。1999。利用ORP控制生物脫硝可行性之探討。第二十四屆廢水處理技術研討會論文集,199-204。 4. 黃錦怡、盧至人、張峻嘉、謝瑜芬。1999。固定化細胞對三氯乙烯好氧分解的效應。第二十四屆廢水處理技術研討會論文集,519-523。 5. 陳國誠、林瑩峰。1991。聚乙烯醇微生物或酵素固定化擔體之製法及其應用。經濟部智慧財產局,公告號00199906。 6. 陳姍玗、蕭麗娟、謝雅雪、張嘉修。1999。以強化膠體包覆Pseudomonas luteola細胞進行染料生物褪色程序。第二十四屆廢水處理技術研討會論文集,541-546。 7. 曾治乾、鄭維薇、陳榮耀、陳文卿、鄭幸雄。1998。內包性生物擔體微結構與菌相之觀察分析研究。第二十三屆廢水處理技術研討會論文集,128-133。 8. 萬騰州、袁又罡、丁中凱、崔天佑。1998。改良型褐藻膠鈣擔體之應用參數研究。第二十三屆廢水處理技術研討會論文集,15-23。 9. 萬騰州、陳勇成、譚仲萍、花建佑。2000。AOAO處理程序添加固定化微生物處理養豬廢水之研究。第二十五屆廢水處理技術研討會論文集,259-269。 10. Anthonisen, A. L., Loehr, R. C., Prakasam, T. B. S., Srinath, E. G., 1976. Inhibition of nitrification by ammonia and nitrous acid. J. W. P. C. Fed., 48(5), 835-852. 11. Anderson, I. C., Levine, J. S., 1986. Relative rates of nitric oxide and nitrous oxide production by nitrifiers, denitrifiers, and nitrate respirates. Appl. Environ. Microbiol., 51, 938-945. 12. Akunna, J. C., C. Bizeau and R. Moletta, 1993. Nitrate and nitrite reductions with anaerobic sludge using various carbon source :glucose, glycerol, acetic acid, lactic acid and methanol. Wat. Res., 27(8), 1303-1312. 13. Arrojo, B., Anuska, M. C., Juan, M. G., Ramón, M., 2004. Aerobic granulation with industrial wastewater in sequencing batch reactors. Wat. Res., 38, 3389-3399. 14. Brazil, B. L., 2006. Performance and operation of a rotating biological contactor in a tilapia recirculating aquaculture system. Aqu. Eng., 34, 261-274. 15. Cohen, Y., Gordon, L. I., 1978. Nitrous oxide in the oxygen minimum of eastern tropical North Pacific : evidence for its consumption during denitrification and possible mechanisms for its production. Deep. Sea. Res., 25, 509-524. 16. Chen, K. C. and Lin, Y. F., 1994. Immobilization of microorganisms with phosphorylated polyvinyl alcohol (PVA) gel. Enz. Microb. Technol., 16, 79-83. 17. Chen, K. C., Lee, S. C., Chin, S. C., Houng, J. Y., 1998. Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms. Enz. Mic. Tec., 23, 311-320. 18. Chen, K. C., Chen, C. Y., Peng, J. W., Houng, J. Y., 2002. Real-time control of an immobilized-cell reactor for wastewater treatment using ORP. Wat. Res., 36, 230-238. 19. Carvalho, G., MEYER, R. L., Yuan, Z., Keller, J., 2006. Differential distribution of ammonia and nitrite oxidising bacteria in flocs and granules from a nitrifying/denitrifying sequencing batch reactor. Enz. Micro. Tech., 39, 1392-1398. 20. Eding, E. H., Kamstra, A., Verreth, J. A. J., Huisman, E. A., Klapwijk, A., 2006. Design and operation of nitrifying trickling filters in recirculating aquaculture: A review. Aqu. Eng., 34, 234-260. 21. Freitag, A., Rudert M., Bock, E., 1987. Growth of Nitrobacter by dissimilatoric nitrate reduction. FEMS. Microbiol. Lett., 48, 105-109. 22. Fuerhacker, M., H. Bauer, R. Ellinger, U. Sree, H. Schmid, F. Zibuschka, H. Puxbaum, 2000. Approach for a novel control strategy for simultaneous nitrification/denitrification in activated sludge reactors. Wat. Res., 34(9), 2499-2506. 23. Greenberg, A. E., Clescerl, L. S., Eaton, A. D., 1992. Standard methods : For the examination of water and wastewater. 24. Gordon F. Bickerstaff, 1997. Immobilization of enzymes and cells. HUMANA PRESS. 25. Grunditz, C., Dalhammar, G., 2001. Development of nitrification inhibition assays using cultures of Nitrosomonas and Nitrobacter. Wat. Res., 35(2), 433-440. 26. Guo, H., Jiti, Z., Jiang, S., Zhiyong, Z., 2005. Integration of nitrification and denitrification in airlift bioreactor. Bio. Eng. Jou., 23, 57-62. 27. Hooper, A. B. and Terry, K. R., 1979. Hydroxylamine oxidoreductase of Nitrosomonas. Production of nitric oxide from hydroxylamine. Biochim. Biophys. Acta., 512, 12-20. 28. Heales, D., 1985. Water quality changes during the conditioningof small, closed seawater systems, Report 176. CSIRO Marine Laboratories, Cleveland, Queensland, Australia, p.7. 29. Hopkins, J. S., Hamilton, R. D., Sandifer, P. S., Browdy, C. L.,Stokes, A. D., 1993. Effect of water exchange rate on production, water quality, effluent characteristics and nitrogen budgets of intensive shrimp ponds. J. World Aquac. Soc., 24(3), 304-320. 30. Hao, X., Mattinze, J., 1998. Removing nitrate and ammonium from drainage water by simulation of natural biological processes.Wat. Res., 32(3), 936-943. 31. Henze, M., R. Dupont, P. Grau, A. D. L. Sota, 1993. Rising sludge in secondary settlers due to denitrification. Wat. Res., 27(2), 231-236. 32. Hargreaves, J. A., 1998. Nitrogen biogeochemistry of aquaculture ponds1. Aquaculture, 166(3-4), 181-212. 33. Julio, A. C., Alvaro, A., Annabella, S., 2005. Nitrate toxicity toaquatic animals: a review with new data for freshwater invertebrates. Chemosphere, 58(9), 1255-1267. 34. Kim, S. K., Kong, I., Lee, B. H., Kang, L., Lee, M. G., Suh, K. H., 2000. Removal of ammonium-N from a recirculation aquacultural system using an immobilized nitrifier. Aqu. Eng., 21(3),139-150. 35. Kim, J. H., Chen, M., Kishida, N., Sudo, R., 2004. Integrated real time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors. Wat. Res., 38, 3340-3348. 36. Kishida, N., Kim, J. H., Chen, M., Sasaki, H., Sudo, R., 2003.Effectiveness of oxidation-reduction potential and pH as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors. Jou. Bio. Bioeng.,96(3), 285-290. 37. Leenen, E. J. T. M., VÌTOR, A. P. D, S., Grolle, K. C. F., Tramper, J., Wijffels, R. H., 1996. Characteristics of and selectioncriteria for support materials for cell immobilization in wastewater treatment. Wat. Res., 30(12), 2985-2996. 38. Lekang, O. I., Kleppe, H., 2000. Efficiency of nitrification in trickling filters using different filter media. Aqu. Eng., 21(3), 181-199. 39. Lemarié, G., Dosdat, A., Covès, D., Dutto, G., Gasset, E., Person-Le, R. J., 2004. Effect of chronic ammonia exposure on growth of European seabass (Dicentrarchus labrax) juveniles. Aquaculture, 229(1-4), 479-491. 40. Ling, J., Chen, S., 2005. Impact of organic carbon on nitrification performance of difference biofilters. Aqu. Eng., 33, 150-162. 41. Metcalf & Eddy, 1991. Wastewater engineering : treatment disposal reuse, three edition. McGraw-Hill. 42. Moe, M. A. Jr., 1993. The marine aquarium reference : systemsand invertebrates. Green Turtle Publications, Plantation, FL, p.510. 43. Masser, M. P., Rackocy, J., Losordo, T. M., 1999. Recirculatingaquaculture tank production systems : management of recirculating systems. Southern Regional Aquaculture Center, Publication no. 452, 12 pp. 44. Menasveta, P., Panritdam, T., Sihanonth, P., Powtongsook, S., Chuntapa, B., Lee, P., 2001. Design and function of a closed, recirculating seawater system with denitrification for the culture of black tiger shrimp broodstock. Aqu. Eng., 25, 35-49. 45. Nagadomi, H., Hiromitsu, T., Takeno, K., Watanabe, M., Sasaki,K., 1999. Treatment of aquarium water by denitrifying photosynthetic bacteria using immobilized polyvinyl alcohol beads. Jou. Bio. Bio., 87(2), 189-193. 46. Okamoto, K., Washiyama, K., Harada, Y., Sato, K., Moriyama,K., 1990. Renovation of an extended aeration plant for simultaneous biological removal of nitrogen and phosphorus using oxic-anaerobic-oxic process. Wat. Sci. Tech., 22(7/8), 61-68, WSTED4. 47. Poth, M. and Focht, D. D., 1985. 15N kinetic analysis of N2O production by Nitrosomonas europaea : an examination of nitrifier denitrification. Appl. Environ. Microbiol. 49, 1134-1141. 48. Park, E. J., Jae-Koan Seo, Mi-Ryung Kim, Il-Hyong Jung, Joong kyun Kim, Sung-Koo Kim, 2001. Salinity acclimation of immobilized freshwater denitrifier. Aqu. Eng., 24, 169-180. 49. Rosevear, A. 1984. Immobilized biocatalysts – a critical review. J. Chem. Technol. Biotechnol., 34B, 127-150. 50. Roger, G. L., Klementon, S. L., 1985. Ammonia removal in selected aquaculture water reuse biofilters. Aqu. Eng., 4, 135-154. 51. Rittmann, B. E., McCarty, L. P., 2001. Environmental Biotechnology : Principles and Applications. McGraw-Hill. 52. Ridha, M. T. and Cruz, E. M., 2001. Effect of biofilter media on water quality and biological performance of the Nile tilapia Oreochromis niloticus L. reared in a simple recirculating system. Aqu. Eng., 24, 157-166. 53. Rijn, J. V., Tal, Y., Schreier, H. J., 2006. Denitrification in recirculating systems: theory and applications. Aqu. Eng., 34, 364-376. 54. Sumino, T., NAKAMURA, H., Mori, N., Kawaguchi, Y., 1991. Immobilization of nitrifying bacteria by polyethylene glycol prepolymer. Jou. Fer. Bio., 73(1), 37-42. 55. Stüven, R., Vollmer, M., Bock, E., 1992. The impact of organic matter on nitric oxide formation by Nitrosomonas europaea. Arch. Microbiol., 158, 439-443. 56. Smolders, G. J. F., J. van der Meij, M. C. M. van Loosdrecht, J. J. Heijnen, 1994. Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process. Biotech. Bioeng., 44, 837-848. 57. Schulthess, R. V., D. Wild, W. Gujer, 1994. Nitric and nitrous oxides from denitrification activated sludge at low oxygen concentration. Wat. Sci. Tech., 30(6), 123-132. 58. Schulthess, R. V., Kühni, M., Gujer, W., 1995. Release of nitric and nitrous oxides from denitrifying activated sludge. Wat. Res., 29(1), 215-226. 59. Sparks, D. L., A. L. Page, P. A. Helmke, R. H. Loeppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, M. E. Summer, 1996. Methods of soil analysis : Part 3 Chemical Methods. 1130-1139. 60. Schmidt, I. and Bock, E., 1997. Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha. Arch. Microbiol., 167, 106-111. 61. Schmidt, I. and Bock, E., 1998. Anaerobic ammonia oxidation by cell-free extracts of Nitrosomonas eutropha. Antonie can Leeuwenhoek, 73, 271-278. 62. Shan, H., and J. P. Obbard, 2001. Ammonia removal from prawn aquaculture water using immobilized nitrifying bacteria. Appl. Microbiol. Biotechnol., 57, 791-798. 63. Seo, J. K., Jung, I. H., Kim, M. R., Kim, B. J., Nam, S. W., Kim, S. K., 2001. Nitrification performance of nitrifiers immobilized in PVA (polyvinyl alcohol) for a marine recirculating aquariumsystem. Aqu. Eng., 24, 181-194. 64. Stüven, R. and Bock, E., 2001. Nitrification and denitrification as asource for NO and NO2 production in high-strength wastewater. Wat. Res., 35(8), 1905-1914. 65. Sandu, S. I., Boardman, G. D., Watten, B. J., Brazil, B. L., 2002. Factors influencing the nitrification efficiency of fluidized bed filter with a plastic bead medium. Aqu. Eng., 26(1), 41-59. 66. Summerfelt, S. T., and Sharrer, M. J., 2004. Design implicationof carbon dioxide production within biofilters contained in recirculating salmonid culture systems. Aqu. Eng., 32, 171-182. 67. Wheaton, F. W., Hochheimer, J. N., Kaiser, G. E., Krones, M. J., Libey, G, S., Easter, C. C., 1994a. Nitrification filter principles. In: Timmons, M. B., Losordo, T. M. (Eds.), Aquaculture Water Reuse Systems: Engineering design and management. Elsevier, 101-126. 68. Weissenbacher, N., Loderer, C., Lenz, K., Mahnik, S. N., Wett, B., Fuerhacker, M., 2007. NOx monitoring of a simultaneous nitrifying-denitrifying(SND) activated sludge plant at different oxidation reduction potentials. Wat. Res., 41, 397-405. 69. Yu, R. F., Liaw, S. L., Chang, C. N., Lu, H. J., Cheng, W. Y, 1997. Monitoring and control using on-line ORP on the continuous-flow activated sludge batch reactor system. Wat. Sci. Tech.,35(1), 57-66. 70. Yu, R. F., Liaw, S. L., Chang, C. N., and Cheng, W. Y., 1998.Applying real-time control to enhance the performance of nitrogen removal in the continuous-flow SBR system. Wat. Sci. Tech.,38(3), 271-280. 71. Zhao, H. W., Mavinic, D. S., Oldham, W. K., Koch, F. A., 1999. Controlling factors for simultaneous nitrification and denitrification in a two stage intermittent aeration process treating domestic sewage. Wat. Res., 33(4), 961-970. 72. Zhu, S. and Shulin, C., 2001. Effects of organic carbon on nitrification rate in fixed film biofilters. Aqu. Eng., 25, 1-11.
摘要: 本研究利用氧化還原電位(ORP)及一氧化氮(NO)監測PVA固定化系統處理人工合成養殖廢水。PVA固定化系統以SBR操作在低曝氣量(186ml/min)下觀察到同時硝化及脫硝反應,在前ㄧ個循環所殘留的硝酸態氮及含碳的養殖廢水饋入時進行脫硝反應,發現NO的產量增加,但接下來硝化反應產生的硝酸態氮並沒有進ㄧ步脫硝,推測脫硝碳源不足。脫硝反應過程中當NO增加達每分鐘6.5μg及ORP為325mV時發現轉折點,但不能判斷此為脫硝結束之硝酸轉折點,因為NO可能進一步還原成N2O再還原成氮氣。
We applied ORP and NO monitoring to a PVA immobilized system treating synthetic aquaculture wastewater in this study. The PVA immobilized system was operated as a SBR, under low aeration rate of 186 ml/min. We observed simultaneous nitrification and denitrification. Upon feeding of carbon-containing synthetic aquaculture wastewater, NO3-N remaining from previous cycles was denitrified, with concurrent increase in NO production. However, NO3-N simultaneously being produced was not further denitrified, probably due to insufficient carbon supply in the feed. During denitrification, when NO production rate increased to 6.5μg/min, there was a break point in the ORP curve, at 325mV. However, it is not possible to identify this point to be the nitrate breakpoint where denitrification is complete, since NO could be further reduced to N2O, then to N2.
URI: http://hdl.handle.net/11455/35452
其他識別: U0005-0509200701021500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0509200701021500
顯示於類別:生物產業機電工程學系

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。