請用此 Handle URI 來引用此文件: http://hdl.handle.net/11455/35462
標題: 以軟體感測器建立生物反應器內其生物生長模式
Development of the Biomass Model in Bioreactor Using Software Sensor
作者: 胡振奎
Hu, Chen-Kuei
關鍵字: Bioreactor
生物反應器
Software Sensor
Biomass
軟體感測器
生物濃度
出版社: 生物產業機電工程學系所
引用: 1. 王樹青。1998年。生化反應過程模型化及計算機控制。浙江大學出版社,浙江。2–4。 2. 王樹青、元英進。2001年。生物過程自動化技術。化學工業出版社,北京。110–114。 3. 方世榮譯。1999年。譯自Richard A. Johnson 與 Gouri K. Bhattacharyya著之”Statistics-Principles and Methods”,第三版,529-533。台北市:五南圖書出版股份有限公司。 4. 徐振盛、李孟諺。1995年。環境微生物學。淑馨出版社。45–46。 5. 陳加忠、曹之祖、雷鵬魁。1996。應用電容式水份計量測濕穀含水率之研究。農業工程學報 第42卷第二期:79-87。 6. 陳加忠。2004年。生物反應器的關鍵技術。國立中興大學生物產業機電工程學研究所,生物系統工程研究室。台中。2–3、42–55。 7. 陳國誠。2003年。環境微生物實驗。藝軒圖書出版社。30–31。 8. Araúzo-Bravo Marcos J., José M. Cano-Izquierdo, Eduardo Gómez-Sánchez, Manuel J. López-Nieto, Yannis A. Dimitriadis, Juan López-Coronado. 2004. Automatization of a penicillin production process with soft sensors and an adaptive controller based on neuro fuzzy systems. Control Engineering Practice 12:1073–1090. 9. Chéruy A. 1997. Software sensors in bioprocess engineering. Journal of Biotechnology 52:193–199. 10. Feitkenhauer Heiko, Ulrich Meyer. 2004. Software sensors based on titrimetric techniques for the monitoring and control of aerobic and anaerobic bioreactors. Biochemical Engineering Journal 17:147–151. 11. Ferreira Ana P., Lu´ıs M. Vieira, Joaquim P. Cardoso, Jos´e C. Menezes. 2005. Evaluation of a new annular capacitance probe for biomass monitoring in industrial pilot-scale fermentations. Journal of Biotechnology 116:403–409. 12. Knotters Martin, Marc F.P. Bierkens. 2001. Predicting water table depths in space and time using a regionalised time series model. Geoderma 103:51–77. 13. Liu Yuan-Shuai, Jian-Yong Wu, Kwok-ping Ho. 2006. Characterization of oxygen transfer conditions and their effects on Phaffia rhodozyma growth and carotenoid production in shake-flask cultures. Biochemical Engineering Journal 27:331–335. 14. Komives Claire, Robert S. Parker. 2003. Bioreactor state estimation and control. Current Opinion in Biotechnology 14:468–474. 15. Myers Raymond H. 1989. Classical and modern regression with appications. 2nd ed. Pacific Grove, CA:Duxbury. 16. Navrátil Marián, Anna Norberb, Lars Lembrén, Carl-Fredrik Mandenius. 2005. On-line multi-analyzer monitoring of biomass, glucose and acetate for growth rate control of a Vibrio cholerae fed-batch cultivation. Journal of Biotechnology 115:67–79. 17. Ramirez Jesús, Humberto Gutierrez, Anne Gschaedler. 2001. Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. Journal of Biotechnology 88:259–268. 18. Shimizi Kazuyuki. 1996. A tutorial review on bioprocess systems engineering. Computers chem. Engng. 20:915–941. 19. Salgado A.M., R.O.M. Folly, B. Valdman. 2001. Biomass monitoring by use of a continuous on-line optical sensor. Sensors and Actuators B75:24-28. 20. Türker Mustafa. 2004. Development of biocalorimetry as a technique for process monitoring and control in technical scale fermentations. Thermochimica Acta 419:73–81. 21. Vojinovi´c V., J.M.S. Cabral, L.P. Fonseca. 2006. Real-time bioprocess monitoring. Sensors and Actuators B114:1083–1091. 22. Zhang Yansheng, Zhenya Zhang, Norio Sugiura, Takaaki Maekawa. 2002. Monitoring of methanogen density using near-infrared spectroscopy. Biomass and Bioenergy 22:489–495. 23. Zeaiter M., J.-M. Roger, V. Bellon-Maurel, D.N. Rutledge. 2004. Robustness of models developed by multivariate calibration. Part I: The assessment of robustness. Trends in Analytical Chemistry 23:157~170.
摘要: During a microbial culture, the important parameters in bioprocess measurement are pH, temperature, Dissolved Oxygen, oxygen utility rate, carbon dioxide exchange rate, biomass, metabolite concentration and culture medium consumption. However, there is no on-line and fast method to measure biomass, metabolite concentration and culture medium consumption in present stage. A method is developed and available to measure the oxygen, carbon dioxide concentrations and the flow rate both of in-flow and out-flow of the bioreactor. Then based on these values the model was developed. This model was used to predict the microbial grow rate of biomass. The temperature, mixing speed and ventilated concentration were 22℃, 400 rpm, 0.3 L/min during the cultivations. The inoculums concentration is 7.5% was followed to measure the cell dry weight.
在微生物培養的過程中,需要量測的參數有酸鹼度、溫度、溶氧量(DO)、氧氣利用率(Oxygen Utility Rate, OUR)、與二氧化碳交換率(Carbon Dioxide Exchange Rate, CER)以及生物濃度、代謝物濃度、培養基消耗率等。但在生物濃度、代謝物濃度與培養基消耗率尚未能夠有即時量測且快速的方法。 本實驗是藉由量測生物反應器進氣口與出氣口之二氧化碳、氧氣與通氣量以建立模型,用以預測微生物成長之生物濃度變化。在培養環境為22℃、攪拌速率400rpm及通氣量0.3 slpm之操作條件下進行培養。接入種菌為7.5%。菌體之測定為乾物重法。
URI: http://hdl.handle.net/11455/35462
其他識別: U0005-1508200716205900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1508200716205900
顯示於類別:生物產業機電工程學系

文件中的檔案:
沒有與此文件相關的檔案。


在 DSpace 系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。