Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35476
標題: 塑化劑對塑膠原料粒物理化學及生物分解特性之影響
Effects of Plasticizers on the Physical Chemical and Biodegradable Properties of Plastic Pellets
作者: 李仰修
Li, Yang-Siou
關鍵字: Extrusion technology
擠壓技術
Plasticizers
Biodegradable
Plastic pellets
塑化劑
生物可分解
塑膠原料粒
出版社: 生物產業機電工程學系所
引用: 丁金超。2002。生物分解性塑膠-澱粉/聚乙烯醇的加工與物性研究。國科會專題研究計畫成果報告書。明志科技大學化學工程系。 王曄。2003。高分子加工與流變學。化工 50(1):1-8。 王金煌。2000。酵素反應性擠壓機系統應用於澱粉混煉塑膠之生產與堆肥分解之研究。碩士論文。大同大學生物工程系。 尹維松。1997。生物分解性塑膠在實際使用上的挑戰與爭議。塑膠資訊 11:69-79。 古奇浩。1999。原料配方對於發泡與非發泡型澱粉混煉可分解性塑膠之機械強度與理化特性之研究。碩士論文。大同大學生物工程系。 江晃榮。1994。以澱粉生產塑膠原料-具有潛力的生物技術產品。科學月刊 25(11):849-855。 朱銘毅,郭文法,林靜宜,林麗桂,黃筱萍,陳憲明。2004。天然澱粉高分子之材料特性簡介。化工技術 12(3):141-150。 李名袁。2006。修飾(Harper,1981)典型單軸擠壓機之基本構造圖。中興大學生物產業機電工程學系。 沈曉復。2000。生物可分解塑膠之認識。塑膠資訊 49:20-30。 林偉華。2001。環保塑膠最新應用。塑膠資訊 55:30-35。 林碧洲。2000。分解性塑膠的回顧與展望。塑膠資訊 47:34-39。 吳易凡。2001。生物分解性塑膠之發展動向。塑膠資訊 50:39-50。 吳建興,陳成寶,翁嘉駿。2003。障壁螺桿之介紹及加工條件對其融化區性能之探討。化工 50(1):20-47。 周裕臨。2002。生物完全可分解材料的種類分析與應用。塑膠資訊 73:12-17。 洪世淇。2002。生物分解性塑膠的應用技術與市場展望。塑膠資訊 62:1-7。 邱方遒,丁銘煌。2004。高分子摻合體與研究案例。化工技術 12(3):129-139。 周錦東。2005。聚乙烯醇/澱粉塑膠材料之生物可分解性研究。國科會專題研究計畫成果報告書。萬能科技大學環境工程系。 柯志強。1997。高分子合膠在可分解塑膠產品的應用。美國飼料穀物協會,生物可分解塑膠。34-39。 許鴻淵。1995。將應用的方向設定在生物分解性塑膠被需求之處,美國飼料穀物協會,新塑膠時代的來臨。2-9。 陳埮。1980。塑膠添加劑。高立圖書公司。 陳盈達。2006。以農業原料為基材開發生物可分解塑膠粒之研究。碩士論文。國立中興大學生物產業機電工程學系。 黃招財,楊文禮。2004。應用流動模擬分析薄膜擠壓成型問題。化工技術 12(1):175-180。 黃武章,鄭雲淳。2003。廢棄塑膠何去何從。塑膠資訊 83:39-52。 黃基森。1999。有機廢棄物堆肥化處理現況及對策。美國穀物協會,生物可分解塑膠技術資訊。34-42。 曾勝茂、謝國煌。2003。和我們形影不離的聚胺酯製品。科學發展 362:22-35。 楊承哲。2003。生物可分解高分子的發展。化工資訊與商情 1:45-52。 彭錦樵。1992。米穀擠壓加工-螺軸元件組合、進料速率及螺軸轉速對滯留時間分布之影響。農業機械學刊 1(3):12-22。 彭錦樵。1993。擠壓技術專家-米勒先生演講專輯。美國飼料榖物協會。 鄭瑞洲。1999。可分解性塑膠。科技博物 3(5):96-100。 雷偉斌。2005。生物可分解擠壓緩衝產品之最適操作條件及黏彈模式之建立。博士論文。國立中興大學生物產業機電工程學系。 賴森茂。2004。生物可分解PHA 與可溶性澱粉合膠之製備及性質研究。國科會專題研究計畫成果報告書。宜蘭大學化學工程與材料工程學系。 賴喜美、鍾依林。2005。生物性材料應用技術開發:澱粉-黏土奈米複合膜之製備與性質探討。國科會專題研究計畫成果報告書。台灣大學農業化學系。 戴宏哲,2003。澱粉/聚乙烯醇摻合物的反應加工與發泡。國科會專題研究計畫成果報告書。義守大學化學工程系。 蘇良基。2002。具生物性的完全分解塑膠。塑膠資訊 73:18-23。 蕭世傑。1998。原料配方及螺溝寬度對擠壓緩衝產品理化及生物分解特性之研究。碩士論文。國立中興大學農業機械工程學系。 魏開舜。2002。原料配方對擠壓緩衝產品理化機械及生物分解特性之影響。碩士論文。中興大學生物產業機電工程學系。 ASTM. 1997. ASTM D638-96. 1997 Annual Book of ASTM Standards, ASTM 100 Barr Harbor Drive, Conshohocken, PA. Bhatnagar, S. and M.A. Hanna. 1995. Physical, mechanical, and thermal properties of starch-based plastic foams, Trans. of ASAE. 38(2):567-571. Box, G.E.P. and D.W. Behnken. 1960. Some new three level Designs for the study if quantitative variables. Technometrics. 2:455-463. Ding, Q.B., P. Ainsworth, G. Tucker and H. Marson. 2005. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. Journal of Food Engineering 66:283-289. Dziezak, J.D. 1990. Taking the gamble out of produce development. Food Technology. 44(6):110-117. Edenbanum, J. 1992. Plastics Additives and Modifiers Handbook. Vsn Wostranp Rein Hold, New York. Gachter, R. and H. Muller. 1985. Plastics additives handbook. Hancer Pubishers, New York. Giovanni, M. 1983. Response surface methodology and product optimization. Food technology. 37(11):41-45,83. Govindasamy, S., O.H. Campanella and C.G. Oates. 1997. The single screw extruder as a bioreactor for sago starch hydrolysis. Food Chem. 60:1-11. Guohua, Z., L. Ya, F. Cuilan, Z. Min, Z. Caiqiong and C. Zongdao. 2006. Water resistance, mechanical properties and biodegradability of methylated-constarch/poly(vinyl alcohol) blend film. Polymer Degradation and Stability 91:703-711. Hagenimana, A., X. Ding and T. Fang. 2006. Evaluation of rice flour modified by extrusion cooking. Journal of Cereal Science. 43:38-46. Halley, P., R. Rutgers, S. Coombs, J. Kettles, J. Gralton, G. Christie, M. Jenkins, H. Beh, K. Griffin, R. Jayasekara and G. Lonergan. 2001. Developing biodegradable mulch films from starch-based polymers. Starch 53:362-367. Harper, J.M. 1981. Extrusion of foods. Vol.Ⅰ and Ⅱ.CRC Press,Inc.,Boca Raton,EL. Helbert, W., M. Schülein, and B. Henrissat. 1996. Electron microscopic investigation of the diffusion of Bacollus licheniformis α-amylase into corn starch granules. Intermational Journal Biological Macromolecules. 19 :165-169. Holm, J., N.G. Bjorck, N.G. Asp, L.B. Sjoberg and I. Lundquist. 1985. Starch availability in vitro and vivo after flasking steam cooking popping of wheat. Cereal Sci. 3:193-205. Isolyser company. 1994. Biodegradation of polyvinyl alcohol in sewage treatment facilities. Jayasekara, R., I. Harding, I. Bowater, G.B.Y. Christie and G.T. Lonergan. 2003. Biodegradation by composting of surface modified starch and PVA blended films. Journal of Polymers and the Environment 11(2):49-56. Kim, C.M., J.A. Maga and J.T. Martin. 1987. Properties of extrude blends of wheat dried distiller grain flour with other flours. J. Food Sci. Technol. 24:373-381. Korn, S.R. and J.M. Happer, 1982. Extrusion of corn for ethanol fermentation. Biotech. Lett. 4:417-422. Lawton, B.T., G.A.Henderson and E.J.Derlatka.1972.The effect of Extruder variables on the gelatinization of corn starch. Can.J.Chem.Eng.50(4):168-172. Lawton, J.W and G.F Fanta. 1993. Glycerol-plasticized folms prepared from starch-PVA mixture: effect of poly(ethylene-co-acrylic acid). Carbohydrat polymer 23:275-280. Miladinov, V.D. and M.A. Hanna. 2001. Temperatures and ethanol effects on the properties of extruded modified starch. Industrial Crops and Products 13:21–28. Miller, R.C. 1985. Low moisture extrusion: effect of cooking moisture on product characteristics. J.Food Sci.50(1):249-253. Mori, T., M. Sakimoto and T. Kagi. 1997. Enzymatic Desizing of Polyvinyl Alcohol from Cotton Fabrics. J. Chem. Tech. Biotechnol. 68:151-156. Mori, T., M. Sakimoto, T. Kagi, and T. Sakai. 1996. Isolation and characterization of a strain of Bacillus megaterium that degrades poly(vinyl alcohol). Biosci. Biotech. Biochem. 60:330-2. Otey, F.H., O. Richard and R.P. Westhoff. 1985. Biodegradable starch-based blown films. United States Patent. Poutanen, K. and P. Forssell. 1996. Modification of starch properties with plasticizers.TRIP.4(4):128-132. Preechawong, D., M. Peesan, R. Rujiravanit and P. Supaphol. 2004. Preparation and Properties of Starch/Poly(vinyl alcohol) Composite Foams. Macromol. Symp. 216:217-227. Riggle, D. 1998. Moving Towards consensus on degradable plastics. Biocycle. 39(3):64-70. Roussel, L., A.Vieille, I. Billet and J.C. Cheftel. 1991. Sequential heat gelatinization and enzymatic hydrolysis of a corn starch in an extrusion reactor: Optimization for a maximum dextrose. Lebensm. Wiss. Tech. 24:449-457. Sarikaya, E., T. Higasa, M. Adachi and B. Mikami. 2000. Comparison of degradation abilities of α- and β-amylases on raw starch granules. Process Biochemistry 35:711–715. Seker, M. and M.A. Hannab. 2006. Sodium hydroxide and trimetaphosphate levels affect properties of starch extrudates. Industrial Crops and Products 23:249–255. Siddaramaiah, B. Raj and R. Somashekar. 2004. Structure–Property Relation in Polyvinyl Alcohol/Starch Composites. Journal of Applied Polymer Science 91:603-634. Uhling, H.. Industrial Enzymes and Their Applications. Translated and updated by Elfried M. Linsmaier-Bednar, Ph.D. New York, 1998. Vainionpää, J.. 1995. Numeriacl solution of response surface equations for extrusion cooked cereals. Journal of Food Engineering 24:181-196. Westhoff, R.P., W.F. Kwolek and F.H. Otey. 1979. Starch-polyvinyl alcohol films-effect of various plasticizers. Starch/starke 31:163-165. Whistler, R.L. and J.R. Daniel. 1984. Molecular structure of starch. Starch 2nded.Academic Press, Ins. Zhai, M., F. Yoshii, T. Kume and K. Hashim. 2002. Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydrate Polymers. 50:295-303.
摘要: 本研究利用反應曲面法之實驗設計,探討不同添加比例之塑化劑【甘油(Glycerol)、甲基乙烯丙烯酸(EAA)】,配合擠壓加工技術開發生物可分解塑膠原料粒,並對此塑膠粒進行各項性質之分析測定。各項性質包括化學性質、機械性質、熱特性、樣品表面結構等,將分析結果之水溶性指標、吸水性指標及最大荷重三項反應性狀利用中心組合因子設計(central composite design, CCD)建立其迴歸模式統計出最適原料添加比例之最適擠壓加工作業條件,並將此最適添加比例之產品進行生物分解性測定。擠壓機操作條件固定於模具溫度為100℃、100℃、105℃與105℃,螺軸轉速為25rpm,進料速率為20g/min。將上述三項反應性狀之等高線圖重疊後可得當甘油添加比例為72.41ml(7.24%),EAA之最適添加比例為36.03g(3.60%),帶入各反應性狀之迴歸模式時,經計算可得水溶性指標為6.10%、吸水性指標為5.57%及最大荷重為62.14N之生物可分解塑膠原料粒產品特定預估值。另一方面本研究之樣品熔點Tm值約在203.10℃~213.40℃,而樣品裂解溫度Td約在311.73℃~328.38℃。根據CNS14432之生物可分解塑膠之測試標準進行產品分解度測試,樣本於第34天時其生物分解度達70.54%,在第45天時達77.60%,已符合法規之標準;再利用酵素分解法測定時,得到在反應時間240min後,重量損失達到71.00%。故可判定本研究所研發塑膠原料粒具備生物可分解之特性,應可應用於產業界上,協助解決垃圾減量之問題。
In this study, response surface methodology (RSM) was used to analyze the effect of different plasticizers (glycerol and ethylene-co-methacrylic acid (EAA)) on the chemical, mechanical and thermal properties of a biodegradable plastic pellets as well as the surface structure analysis and biodegradability. A rotatable central composite design (CCD) was used to develop models for the objective responses. The experiments were run at barrels temperatures 100°C, 100°C, 105°C, and 105°C, respectively with screw speed 25 rpm and feed rate 20g/min. Individual contour plots of the different responses were overlaid, and regions meeting the optimum water solubility index (WSI) of 6.10%, water absorption index (WAI) of 5.57% and maximum load of 62.14N were identified at the glycerol level of 72.41ml(7.24%) and the EAA level of 36.03g(3.60%), respectively. Another objective of this study is to focus on the composition levels affecting the thermal properties (melting point (Tm)) and thermal degradation temperature (Td) of extruded pellets. The results indicated that the melting point (Tm) of extruded pellets was ranged from 203.10°C ~213.40°C as well as the thermal degradation temperature (Td) which was ranged from 311.73°C~328.38°C. In order to evaluate the possibility of using extruded pellets as biodegradable plastic raw materials, the biodegradability of the extruded pellets was being tested according to the CNS14432 standard. The result indicated that the biodegradability of the extruded pellets reached 70.54% after 34 days and 77.60% after 45 days, respectively. Moreover, by using the enzymes analysis method, the weight loss reached 71.00% after 240 mins. Therefore, it could be concluded that the plastic pellets developed in this study consist of biodegradable properties, and it can help to resolve the refuses reduction problem.
URI: http://hdl.handle.net/11455/35476
其他識別: U0005-2308200700015100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2308200700015100
Appears in Collections:生物產業機電工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.