Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3550
標題: 周邊神經修復之奈米生醫材料研發
Development of nanobiomaterials for peripheral nerve repair
作者: 湯正明
Tang, Cheng-Ming
關鍵字: PVA/chitosan conduit
聚乙烯醇/幾丁聚醣導管
nerve regeneration
PCL-PEG diblock copolymer
microphase separation
nanotopography
cell response
inflammation
platelet activation
cell migration
sliding angle
polyurethane
nanocomposite
biocompatibility
gold nanoparticles
tissue reaction.
神經再生
聚己內酯-聚乙烯醇雙團聯式共聚合物
微相分離
奈米地形學
細胞反應
發炎
血小板活化
細胞遷移
滑動角度
聚胺酯
奈米複合材料
生物相容性
金奈米粒子
組織反應
出版社: 化學工程學系所
引用: Chapter.1 [1] Noble J, Munro CA, Prasad VSSV, et al. Analysis of upper and lower extremity peripheral nerve injuries in a population of patients with multiple injuries. J Trauma 1998; 45:116-122. [2] Kelsey JL, Praemer A, Nelson L, et al. Upper Extremity Disorders. Frequency, Impact, and Cost. New York, NY, Churchill Livingstone, 1997. [3] Mohanna PN, Young RC, Wiberg M, et al. A composite poly-hydroxybutyrate-glial growth factor conduit for long nerve gap repairs. J Anat 2003; 203:553-565. [4] Lee GW, Collins ED, Kupfer DM, Weeks PM. Healing of specialized tissues. in Martin DS, Collins ED (ed): Manual of acute hand injuries. St. Louis, USA, Mosby, 1998, pp.14-17. [5] Seckel BR. Enhancement of peripheral nerve regeneration. Muscle Nerve 1990; 13:785-800. [6] Chaudhry V, Glass JD, Griffin JW. Wallerian degeneration in peripheral nerve disease. Neurol Clin 1992; 10:613-627. [7] Lundborg G: Nerve regeneration, in Lundborg G (ed): Nerve Injury and Repair. London, UK, Churchill Livingstone, 1988, pp 149-195. [8] Morris JH, Hudson AR, Weddell G. A study of degeneration and regeneration in the divided rat sciatic nerve based on electron microscopy. Z Zellforsch Mikrosk Anat 1972; 124:165-203. [9] Tessier-Lavigne M, Goodman CS. The molecular biology of axon guidance. Science 1996; 274:1123-1133. [10] Brushart TM, Tarlov EC, Mesulam MM. Specificity of muscle reinnervation after epineurial and individual fascicular suture of the rat sciatic nerve. J Hand Surg 1983; 8:248-253. [11] Mackinnon SE, Dellon AL, Hudson AR, et al. A primate model for chronic nerve compression. J Reconstr Microsurg 1985; 1:185-194. [12]Terzis J, Smith K. The peripheral nerve: structure, function, reconstruction. Norfolk, Hampton press, 1990. [13] Ferrara G: Nuova Selva di Cirurgia Divisia tre Parti. Venice, Italy, S Combi, 1608. [14] Sanders FK. The repair of large gaps in the peripheral nerves. Brain 1942; 65:281-337. [15] Archibald SJ, Shefner J, Kraup C, Madison RD. Monkey median nerve repaired by nerve craft or collagen nerve guide tube. J Neurosci 1995; 15:4109-4123. [16] Valentini RF, Sanatini AM, Dario P, Aebischer P. Polymer electret guidance channels enhance peripheral nerve regeneration in mice. Brain Res 1989; 480:300-304. [17] Hentz VR, Rosen JM, Xiao S, McGill KC, Abrahem G. A comparison of suture and tubulization nerve repair techniques in a primate. J Hand Surg 1991; 16A:251-261. [18] Bora FW, Bednar JM, Osterman AL, Brown MJ, Sumner AJ. Prosthetic nerve grafts: a resorbable tube as an alternative to autogenous nerve grafting. J Hand Surg 1987; 12A:685-692. [19] Robinson PH, van der Lei B, Hoppen HJ, Leenslag JW, Pennings AJ, Niewenhuis P. Nerve regeneration through a two-ply biodegradable nerve guide in the rat and the influence of ACTH4-9 nerve growth factor. Microsurgery 1991; 12:412-419. [20] Hall S. Axonal regeneration through acellular muscle grafts. J Anatomy 1997; 190:57-71. [21] Glasby MA, Gschmeissner S, Hitchcock RJI, Huang CL. Regeneration of the sciatic nerve in rats. J Bone Joint Surg 1986; 68-B:829-833. [22] Glasby MA, Gschmeissner SE, Huang CL, de Souza BA. Degenerated muscle grafts used for peripheral nerve repair in primates. J Hand Surg 1986; 11-B:347-351. [23] Brunelli GA, Battiston B, Vigasio A, Brunelli G, Marocolo D. Bridging nerve defects with combined skeletal muscle and vein conduits. Microsurgery 1993; 14:247-251. [24] Lundborg G, Hanson H. Nerve regeneration through performed pseudosynovial tubes. J Hand Surg 1980; 5:35-38. [25] Lundborg G, Hanson H. Regeneration of peripheral nerve through a performed tissue space. Brain Res 1979; 178:573-576. [26] Kuhn WE, Hall JL. The repair of peripheral nerves using porous tubular prostheses. In: Hausener HH, Taubenblat PW, (ed): Modern developments in powder metalurgy. New Jersey: American Powder Metalurgy Institute Princeton, 1976:279-301. [27] Aebischer P, Guenard V, Valentini RF. The morphology of regenerating peripheral nerves is modulated by the surface microgeometry of polymeric guidance channels. Brain Res 1990; 531:211-218. [28] Montgomery CT, Robson JA. Implants of cultured schwann cells support axonal growth in the central nervous system of adult rats. Exp Neurol 1993; 122:107-124. [29] Montgomery CT, Robson JA. New methods of transplanting purified glial cells into the brain. J Neurosci Meth 1990; 32:135-141. [30] Harvey AR, Chen M, Plant GW, Dyson SE. Regrowth of axons within Schwann cell-filled polycarbonate tubes implanted into the damaged optic tract and cerebral cortex of rats. Restor Neurol Neurosci 1994; 6:221-237. [31] Ducker TB, Hayes GJ. Experimental improvements in the use of silastic cuff for peripheral nerve repair. J Neurosurg 1968; 28:582-587. [32] Woolley AL, Hollowell JP, Rich KM. Fibronectin-laminin combination enhances peripheral nerve regeneration across long gaps. Head Neck Surg 1990; 103:509-518. [33] Lundborg G, Dahlin LB, Danielsen N. Ulnar nerve repair by the silicone chamber technique. Scand J Plast Reconstr Hand Surg 1991; 25:79-82. [34] Heath CA, Rutkowski GE. The development of bioartificial nerve grafts for peripheral-nerve regeneration. Trends biotechnol 1998; 16:163-168. [35] Zhao Q, Lundborg G, Danielsen N, Bjursten LM, Dahlin LB. Nerve regeneration in a ‘pseudo-nerve' graft created in a silicone tube. Brain Res 1997; 769:125-134. [36] Suzuki Y, Tanihara M, Ohnishi K, Suzuki K, Endo K, Nishimura Y. Cat peripheral nerve regeneration across 50 mm gap repaired with a novel nerve guide composed of freeze-dried alginate gel. Neurosci lett 1999; 259:75-78. [37] Evans GRD, Brandt K, Widmer MS, Lu L, Meszlenyi RK, Gupta PK, Mikos AG, Hodges J, Williams J, Gurlek A, Nabawi A, Lohman R, Patrick Jr CW. In vivo evaluation of poly(L-lactic acid) porous conduits for peripheral nerve regeneration. Biomaterials 1999; 20:1109-1115. [38] Wang S, Wan ACU, Xu X, Gao S, Mao H, Leong KW, Yu H. A newnerve guide conduit material composed of a biodegradable poly(phosphoester). Biomaterials 2001; 22:1157-1169. [39] Itoh S, Takakuda K, Kawabata S, Aso Y, Kasai K, Itoh H, Shinomiya K. Evaluation of cross-linking procedures of collagen tubes used in peripheral nerve repair. Biomaterials 2002; 23:4475-4481. [40] Keilhoff G, Stang F, Wolf G, Fansa F. Bio-compatibility of type I/III collagen matrix for peripheral nerve reconstruction. Biomaterials 2003; 24:2779-2787. [41] Ahmed AM, Venkateshwarlu U, Jayakumar R. Multilayered peptide incorporated collagen tubules for peripheral nerve repair. Biomaterials 2004; 25;2585-2594. [42] Itoh S, Yamaguchi I, Shinomiya K, Tanaka J. Development of the chitosan tube prepared from crab tendon for nerve regeneration. Science and Technology of Advanced Materials 2003; 4:261-268. [43] Meek MF, Coert JH. Clinical use of nerve conduits in peripheral-nerve repair: review of the literature. J Reconstr Microsurg 2002; 18:97-110. [44] Harrison RG. The cultivation of tissues in extraneous media as a method of morphogenetic study. Anat Rec 1912; 6:182-193. [45] Weiss P. Experiments on cell and axon orientation in vitro: the role of colloidal exudates in tissue organization. J Exp Zoo 1945; 100:353-386. [46] Curtis AS, Varde M. Control of cell behavior: topological factors. 1964; 33:15-26. [47] Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials 1999; 20:573-585. [48] Craighead HG, James CD, Turner AMP. Chemical and topographical patterning for directed cell attachment. Curr Opin Solid Stm 2001; 5:177-184. [49] Wilkinson CDW, Riehle M, Wood M, Gallagher J, Curtis ASG. The use of materials patterned on a nano- and micro-metric scale in cellular engineering. Mater Sci Eng C 2002; 19:263-269. [50] Curtis ASG, Casey B, Gallagher JO, Pasqui D, Wood MA, Wilkinson CDW. Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important? Biophys Chem 2001; 94:275-283. [51] Dalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis ASG. In vitro reaction of endothelial cells to polymer demixed nanotopography. Biomaterials 2002; 23:2945-2954. [52] Dalby MJ, Childs S, Riehle MO, Johnstone HJH, Affrossman S, Curtis ASG. Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time. Biomaterials 2003; 24:927-935. [53] Dalby MJ, Yarwood SJ, Riehle MO, Johnstone HJH, Affrossman S. et. al. Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed Islands. Exp Cell Res 2002; 276:1-9. [54] Riehle MO, Dalby MJ, Johnstone H, MacIntosh A, Affrossman S. Cell behaviour of rat calvaria bone cells on surfaces with random nanometric features. Materi Sci Eng 2003; C23:337-340. [55] Affrossman S, Henn G, O''Neill SA, Pethrick RA, Stamm M. Surface topography and composition of deuterated polystyrene-poly(bromostyrene) blends. Macromolecules 1996; 29:5010-5016. [56] Fan YW, Cui FZ, Hou SP, Xu QY, Chen LN, Lee IS. Culture of neural cells on silicon wafers with nano-scale surface topograph. J Neurosci Meth 2002; 120:17-23. [57] Fan YW, Cui FZ, Chen LN, Zhai Y, Xu QY, Lee IS. Adhesion of neural cells on silicon wafer with nano-topographic surface. Appl Surf Sci 2002; 187:313-318. [58] Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez Jr MP, Schultz PG. Organization of ‘nanocrystal molecules' using DNA. Nature 1996; 382:609-611. [59] Wang RZ, Cui FZ, Lu HB, Wen HB, Ma CL, Li HD. Synthesis of nanophase hydroxyapatite/collagen composite. J Mater Sci Lett 1995; 14:490-492 [60] Du C, Cui FZ, Zhang W, Feng QL, Zhu XD, Groot K de. Formation of calcium phosphate/collagen composites through mineralization of collagen matrix. J Biomed Mater Res 2000; 50:518-527. [61] Du C, Cui FZ, Zhu XD, de Groot K. Three-dimensional nano-HAp/collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res 1999; 44:407-415. [62] Du C, Cui FZ, Feng QL, Zhu XD, de Groot K. Tissue response to nano-hydroxyapatite/collagen composite implants in marrow cavity. J Biomed Mater Res 1998; 42:540-548. [63] Liao SS, Cui FZ, Zhang W, Feng QL. Hierarchically biomimetic bone scaffold materials: Nano-HA/collagen/PLA composite. J Biomed Mater Res 2004; 69B:158-165. [64] Little AR, O''Callagha JP. Astrogliosis in the adult and developing CNS: is there a role for proinflammatory cytokines? Neurotoxicology. 2001; 22:607-618. [65] Peduzzi JD, Grayson TB, Fischer FR, Geisert EE Jr. The expression of TAPA (CD81) correlates with the reactive response of astrocytes in the developing rat CNS. Exp Neurol 1999; 160(2):460-468. [66] Price RL, Waid MC, Haberstroh KM, Webster TJ. Selective bone cell adhesion on formulations containing carbon nanofibers. Biomaterials 2003; 24:1877-1887. [67] McKenzie JL, Waid MC, Shi R, Webster TJ. Decreased functions of astrocytes on carbon nanofiber materials. Biomaterials 2004; 25:1309-1317. Chapter.2 [1] Pu LL, Syed SA, Reid M, Patwa H, Goldstein JM, Forman DL, Thomson JG. Effects of nerve growth factor on nerve regeneration through a vein graft across a gap. Plast Reconstr Surg 1999; 104:1379-1385. [2] Lundborg G, Dahlin LB, Danielsen N, Gelberman RH, Longo FM, Powell HC, Varon S. Nerve regeneration in silicone chambers: influence of gap length and of distal stump components. Exp Neurol 1982; 76:361-375. [3] Lundborg G, Gelberman RH, Longo FM, Powell HC, Varon S. In vivo regeneration of cut nerves encased in silicone tubes: growth across a six-millimeter gap. J Neuropathol Exp Neurol. 1982; 41:412-422. [4] Domard A, Domard M. Chitosan: Structure-properties relationship and biomedical applications. In Polymeric Biomaterials (Dumitriu, S., ed.), Marcel Dekker, Inc., New York, 2002, pp.187-212. [5] Hejazi R. Amiji M. Chitosan-based Delivery systems: Physicochemical properties and pharmaceutical applications. In Polymeric Biomaterials (Dumitriu, S., ed.), Marcel Dekker, Inc., New York, 2002, pp.213-237. [6] Mori T. Okumura M, Matsuura M, Ueno K, Tokura S, Okamoto Y, Minami S, Fujinaga T. Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials 1997; 18:947-951. [7] Rosales-Cortés M, Peregrina-Sandoval J, Baňuelos-Pineda J, Sarabia-Estrada R, Gómez-Rodiles CC, Albarrán-Rodrígez E. Immunological study of a chitosan prosthesis in the sciatic nerve regeneration of the axotomized dog. J Biomaterials App 2003; 18:15-23. [8] Khor E. Chitin: fulfilling a biomaterials promise. Amsterdam; New York : Elsevier Science Ltd., 2001. [9] Wong TW, Chan LW, Kho SB, Sia Heng PW. Design of controlled-release solid dosage forms of alginate and chitosan using microwave. J Control Release. 2002; 84:99-114. [10] Shigemasa Y, Minami S. Applications of chitin and chitosan for biomaterials. Biotechnol Genet Eng Rev 1996; 13:383-420. [11] Rao SB, Sharma CP. Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential. J Biomed Mater Res 1997; 34:21-28. [12] Ono K, Saito Y, Yura H, Ishikawa K, Kurita A, Akaike T, Ishihara M. Photocrosslinkable chitosan as a biological adhesive. J Biomed Mater Res 2000; 49:289-295. [13] Obara K, Ishihara M, Ishizuka T, Fujita M, Ozeki Y, Maehara T, Saito Y, Yura H, Matsui T, Hattori H, Kikuchi M, Kurita A. Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials 2003; 24:3437-3444. [14] Kweon D, Song S, Park Y. Preparation of water-soluble chitosan/heparin complex and its application as wound healing accelerator. Biomaterials 2003; 24:1595-1601. [15] Ishihara M, Obara K, Ishizuka T, Fujita M, Sato M, Masuoka K, Saito Y, Yura H, Matsui T, Hattori H, Kikuchi M, Kurita A. Controlled release of fibroblast growth factors and heparin from photocrosslinked chitosan hydrogels and subsequent effect on in vivo vascularization. J Biomed Mater Res 2003; 64:551-559. [16] Li JC, Zhong YH, Grong YD, Zhao NM, Zhang XF. Chitosan conduits for peripheral nerve regeneration. Tsinghua Science and Technology 1999; 4: 1515-1518. [17] Cheng M, Deng J, Yang F, Gong Y, Zhao N, Zhang X. Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials 2003; 24:2871-2880. [18] Hung TK, Chang GL, Lin HS, Walter FR, Bunegin L. Stress-strain relationship of the spinal cord of anesthetized cats. J Biomech 1980; 14:269-276. [19] Yamaoka T, Tabata Y, Ikada Y. Comparison of body distribution of poly(vinyl alcohol) with other water-soluble polymers after intravenous administration. J Pharm Pharmacol 1995; 47:479-486. [20] Yamaoka T, Tabata Y, Ikada Y. Fate of water-soluble polymers administered via different routes. J Pharm Sci 1995; 84:349-354. [21] Brazel, CS, Peppas NA. Dimensionless analysis of swelling of hydrophilic glassy polymers with subsequent drug release from relaxing structures. Biomaterials 1999; 20:721-732. [22] Hyon SH, Cha WI, Ikada Y, Kita M, Ogura Y, Honda Y. Poly(vinyl alcohol) hydrogels as soft contact lens material. J Biomater Sci Polym Ed 1994; 5:397-406. [23] Kobayashi M, Toguchida J, Oka M. Development of the shields for tendon injury repair using polyvinyl alcohol--hydrogel (PVA-H). J Biomed Mater Res 2001; 58:344-351. [24] Li JK, Wang N, Wu XS. Poly(vinyl alcohol) nanoparticles prepared by freezing-thawing process for protein/peptide drug delivery. J Control Release 1998; 56:117-126. [25] Schmedlen RH, Masters KS, West JL. Photocrosslinkable polyvinyl alcohol hydrogels that can be modified with cell adhesion peptides for use in tissue engineering. Biomaterials 2002; 23:4325-4332. [26] Nagura M, Takagi N, Koyano T, Ohkoshi Y, Minoura N. Structures and physicochemical properties of high water content, tough hydrogels prepared by blending of poly(vinyl alcohol) with poly(styrene sulfonic acid) sodium salt. Polym. J 1994; 26:675-679. [27] Taravel MN, Domard A. Relation between the physicochemical characteristics of collagen and its interactions with chitosan: I. Biomaterials 1993; 14:930-938. [28] Grothe C, Heese K, Meisinger C, Wewetzer K, Kunz D, Cattini P, Otten U. Expression of interleukin-6 and its receptor in the sciatic nerve and cultured Schwann cells: relation to 18-kD fibroblast growth factor-2. Brain Res 2000; 885:172-181. [29] Hare GM, Evans PJ, Mackinnon SE, Best TJ, Bain JR, Szalai JP, Hunter DA. Walking track analysis: a long-term assessment of peripheral nerve recovery. Plast Reconstr Surg 1992; 89:251-258. [30] Hamdan M, Blanco L, Khraisat A, Tresguerres IF. Influence of titanium surface charge on fibroblast adhesion. Clin Implant Dent Relat Res. 2006; 8:32-38. [31] Sethi RK, Thompson LL. The electromyographer''s handbook. 2nd Ed., Little Brown and Co, Boston, 1989, pp.123-151. Chapter.3 [1] Curtis A, Wilkinson C. Nanotechnique and approaches in biotechnology. Trends Biotechnol 2001; 19:97-101. [2] Curtis ASG, Casey B, Gallagher JO, Pasqui D, Wood MA, Wilkinson CDW. Substratum nanotopography and the adhesion of biological cells. Are symmetry or regularity of nanotopography important?. Biophy Chem 2001; 94:275-283. [3] Dalby MJ, Riehle MO, Johnstone H, Affrossman S, Curtis ASG. In vitro reaction of endothelial cell to polymer demixed nanotopography. Biomaterials 2002; 23:2945-2954. [4] Dalby MJ, Yarwood SJ, Riehle MO, Johnstone HJH, Affrossman S, Curtis ASG.. Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp Cell Res 2002; 276:1-9. [5] Dalby MJ, Child S, Riehle MO, Johnstone HJH, Affrossman S, Curtis ASG. Fibroblast reaction to island topography: changes in cytoskeleton and morphology with time. Biomaterials 2003; 24: 927-935. [6] Buttiglieri S, Pasqui D, Migliori M, Johnstone H, Affrossman S, Sereni L, Wratten ML, Barbucci R, Tetta C, Camussi G. Endothelization and adherence of leucocytes to nanostructured surfaces. Biomaterials 2003; 24:2731-2738. [7] Wilkinson CDW, Riehle M, Wood M, Gallangher J, Curtis ASG. The use of materials patterned on a nano- and micro-metric scale in cellular engineering. Mater Sci Eng C 2002; 19:263-269. [8] Riehle MO, Dalby MJ, Johnstone H, MacIntosh A, Affrossman S. Cell behaviour of rat calvaria bone cells on surface with random nanometric feature. Mater Sci Eng C 2003; 23:337-340. [9] Curtis ASG, Wilkinson CDW. New depths in cell behaviour: reactions of cells to nanotopography. Biochem Soc Symp 1999; 65:15-26. [10] Altankov G, Thom V, Groth T, Jankova K, Jonsson G, Ulbricht M. Modulating the biocompatibility of polymer surfaces with poly(ethylene glycol): Effect of fibronectin. J Biomed Mater Res 2000; 52:219-230. [11] Amiji M, Park K. Prevention of protein adsorption and platelet adhesion of surface by PEO/PPO/PEO triblock copolymers. Biomaterials 1992; 13:682-692. [12] Hubbell JA. Biomaterials in tissue engineering. Biotechnology (N. Y.) 1995; 13:565-576. [13] Gref R, Luck M, Quellec P, Marchand M, Dellacherie E, Harnisch S, Blunk T, Muller RH. “Stealth” corona-core nanoparticles surface modified by polyethylene glycol (PEG): Influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B 2000; 18:301-313. [14] Sofia SJ, Premnath V, Merrill EW. Poly(ethylene oxide) grafted to silicon surfaces: Grafting density and protein adsorption. Macromolecules 1998; 31:5059-5070. [15] Hamley IW. Melt phase behaviour of block copolymers. In The Physics of Block Copolymers, Oxford University Press, New York, 1998; p.24-130. [16] Yu T, Huang C, Yang L, Ko B, Lin C. Preparation and characterization of aluminum alkoxides and their application to ring-opening polymerization of ε-caprolactones. J Chin Chem Soc 2000; 47:1185-119 [17] Hsu S, Tseng H, Wu M. Comparative in vitro evaluation of two different preparations of small diameter polyurethane vascular grafts. Artif Organs 2000; 24:119-28. [18] Naim JO, van Oss CJ, Ippolito KML, Zhang JW, Jin LP, Fortuna R, Buehner NA. In vitro activation of human monocytes by silicones. Colloids Surfs B 1998; 11:79-86. [19] Oh SH, Go AK, Lee KE, Yuk SH, Lee JH. Anti-inflammatory drug-containing PLLA/PEO diblock copolymer films as tissue adhesion barriers. 3rd Asian Interational Symposium on Biomaterials System and Drug Delivery 2002. p. 267-270. [20] Burridge K, Chrzanowska-Wodnick M. Focal adhesions, contractility, and signaling. Annu Rev Cell Dev Biol 1996; 12:463-519. [21] Juliano RL, Haskill S. Signal transduction from the extracellular matrix. J Cell Biol 1993; 120:577-585. [22] Vuori K. Integrin signaling: tyrosine phosphorylation events in focal adhesion. J Membr Biol 1998; 165:191-199. [23] Cary LA, Guan J. Focal adhesion kinase in integrin mediated signaling. Front Biosci 1999; 4:102-113. [24] Dalby MJ, Giannaras D, Riehle MO, Gadegaard N, Affrossman S, Curtis ASG. Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topography. Biomaterials 2004; 25:77-83. Chapter.4 [1] Aplin AE, Juliano RL. Integrin and cytoskeletal regulation of growth factor signaling to the MAP kinase pathway. J Cell Sci 1999; 112: 695-706. [2] Renshaw MW, Ren XD, Schwartz MA. Growth factor activation of MAP kinase requires cell adhesion. EMBO J 1997; 16: 5592-9. [3] McNamee HP, Ingber DE, Schwartz MA. Adhesion to fibronectin stimulates inositol lipid synthesis and enhances PDGF-induced inositol lipid breakdown. J Cell Biol 1993; 121: 673-84. [4] Tsai WB, Dai CA. Interactions of cells with biomaterial nanostructured surfaces. In: Handbook of nanostructured biomaterials and their applications in nanobiotechnology, volume.1 biomaterials. California: American scientific publishers; 2005. p. 359-84. [5] Carrell NA, Fitzgerald LA, Steiner B, Erickson HP, Phillips DR. Structure of human platelet membrane glycoproteins IIb and IIIa as determined by electron microscopy. J. Biol. Chem 1985; 260:1743-9. [6] Curtis A, Wilkinson C. Nanotechniques and approaches in biotechnology. Trends Biotechnol 2001; 19: 97-101. [7] Dalby MJ, McCloy D, Robertson M, Wilkinson CD, Oreffo RO. Osteoprogenitor response to defined topographies with nanoscale depths. Biomaterials 2006; 27:1306-15. [8] Athanassiou A, Lygeraki ML, Pisignano D, Lakiotaki K, Varda M, Mele E, Fotakis C, Cingolani R, Anastasiadis SH. Photocontrolled variations in the wetting capability of photochromic polymers enhanced by surface nanostructuring. Langmuir 2006; 22:2329-33. [9] Hsu SH, Tang CM, Lin CC. Biocompatibility of poly(epsilon-caprolactone)/ poly(ethylene glycol) diblock copolymers with nanophase separation. Biomaterials 2004; 25:5593-601. [10] Parra-Barraza H, Burboa MG, Sanchez-Vazquez M, Juarez J, Goycoolea FM Valdez MA. Chitosan-cholesterol and chitosan-stearic acid interactions at the air-water interface. Biomacromolecules 2005; 6:2416-26. [11] Dalby MJ, Pasqui D, Affrossman S. Cell response to nano-islands produced by polymer demixing: a brief review. IEE Proc Nanobiotechnol 2004; 151:53-61. [12] Yim EKF, Leong KW. Significance of synthetic nanostuctures in dictating cellular response. Nanomedicine 2005; 1:10-21. [13] Dalby MJ, Giannaras D, Riehle MO, Gadegaard N, Affrossman S, Curtis AS. Rapid fibroblast adhesion to 27nm high polymer demixed nano-topography. Biomaterials 2004; 25:77-83. [14] Dalby MJ, Yarwood SJ, Riehle MO, Johnstone HJ, Affrossman S, Curtis AS. Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp Cell Res 2002; 276:1-9. [15] Dalby MJ, Yarwood SJ, Johnstone HJH, Affrossman S, Riehle MO. Fibroblast signaling events in response to nanotopography: a gene array study. IEEE Trans Nanobioscience 2002; 1:12-7. [16] Dalby MJ, Riehle MO, Sutherland DS, Agheli H, Curtis AS. Changes in fibroblast morphology in response to nano-columns produced by colloidal lithography. Biomaterials 2004; 25:5415-22. [17] Dalby MJ, Berry CC, Riehle MO, Sutherland DS, Agheli H, Curtis AS. Attempted endocytosis of nano-environment produced by colloidal lithography by human fibroblasts. Exp Cell Res 2004; 295:387-94. [18] Curtis A, Wilkinson C. Topographical control of cells. Biomaterials 1997; 18:1573-83. [19] Fischer EG, Stingl A, Kirkpatrick CJ. Migration assay for endothelial cells in multiwells: application to studies on the effect of opioids. J Immunol Methods 1990; 128:235-9. [20] Arima Y, Kato K, Nakamae K. Slipperiness of water droplet on polymer surface: effect of surface morphology and surface free energy. J. Japan Soc. Colour Mat 2000; 73:485-8. [21] Etienne-Manneville S, Hall A. Rho GTPases in cell biology. Nature 2002; 420: 629-35. [22] Condeelis J, The biochemistry of animal cell crawling. In: Motion analysis of living cells. New York: Wiley-Liss Inc; 1998. p. 85-100. [23] Geiger B, Bershadsky A, Pankov R, Yamada KM. Transmembrane crosstalk between the extracellular matrix-cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2001; 2:793-805. [24] Wierzbicka-Patynowski I, Schwarzbauer JE. The ins and outs of fibronectin matrix assembly. J Cell Sci 2003; 116:3269-76. [25] Su WD, Liao YF, Chu IM. Observation of fibroblast motility on a micro-grooved hydrophobic elastomer substrate with different geometric characteristics. Micron 2006; in Press, corrected proof online 15 May 2006. [26] Dalton BA, McFarland CD, Gengenbach TR, Griesser HJ, Steele JG. Polymer surface chemistry and bone cell migration. J Biomater Sci Polym Ed 1998; 9: 781-99. [27] Steele JG, Johnson G, McLean KM, Beumer GJ, Griesser HJ. Effect of porosity and surface hydrophilicity on migration of epithelial tissue over synthetic polymer. J Biomed Mater Res 2000; 50:475-82. [28] Wood MA, Wilkinson CDW, Curit ASG. The effect of colloidal nanotopography on initial fibroblast adhesion and morphology. IEEE Transactions on Nanobioscience 2006; 5:20-31. [29] Preston TM, King CA, Hyams JS. Cell surface motility. In: The cytoskeleton and cell motility. New York: Chapman and Hall; 1990. p. 158-86. [30] Lee J, Ishihara A, Theriot JA, Jacobson K. Principle of locomotion for simple-shaped cells. Nature 1993; 362:167-71. [31] Paku S, Tovari J, Lorincz Z, Timar F, Dome B, Kopper L, Raz A, Timar J. Adhesion dynamics and cytoskeletal structure of gliding human fibrosarcoma cells: a hypothetical model of cell migration. Exp Cell Res 2003; 290: 246-53. Chapter.5 [1] Lamba N, Woodhouse K, Cooper S, Polyurethanes in biomedical applications. Boca Raton, FL: CRC press; 1998. [2] Hsu S, Tseng H, Wu M. Comparative in vitro evaluation of two different preparations of small diameter polyurethane vascular grafts. Artif Organs 2000;24:119-128. [3] Kuan H, Ma M, Chang W, Yuen S, Wu H, Lee T. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos Sci Technol 2005;65:1703-1710. [4] Stokes K,, Coury A, Urbanski P. Autooxidative degradation of implanted polyether polyurethane devices. J Biomater Appl 1987;1:411-448. [5] Wiggins M, Wilkoff B, Anderson J, Hiltner A. Biodegradation of polyether polyurethane inner insulation in bipolar pacemaker leads. J Biomed Mater Res 2001;58:302-307. [6] Zhao Q, Topham N, Anderson J, Hiltner A, Lodoen G, Payet C. Foreign-body giant cells and polyurethane biostability: in vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res 1991;25:177-183. [7] Stokes K, McVenes R. Polyurethane elastomer biostability. J Biomater Appl 1995:9:321-354. [8] Hsu S, Lin Z. Biocompatibility and biostability of a series of poly(carbonate)urethanes. Colloids Surf B 2004;36:1-12. [9] Christenson E, Wiggins M, Anderson J, Hiltner A. Surface modification of poly(ether urethane urea) with modified dehydroepiandrosterone for improved in vivo biostability. J Biomed Mater Res. 2005;73:108-115. [10] Schubert M, Wiggins M, Anderson J, Hiltner A. Comparison of two antioxidants for poly(etherurethane urea) in an accelerated in vitro biodegradation system. J Biomed Mater Res 1997;34:493-505. [11] Ismail H, Freakley P,, Sheng E. The effect of carbon black particle size on multifunctional additive-carbon black interaction. Eur Polym J 1995;31:1049-1056. [12] Kim B, Seo J, Jeong H. Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur Polym J 2003;39:85-91. [13] Van Wiggen G. Indonesische gouden vullingen uit de 15e eeuw. Ned-Tijdschr-Tandheelkd 1985;92:75-78. [14] Gu H, Chen Z, Sa R, Yuan S, Chen H, Ding Y, Yu A. The immobilization of hepatocytes on 24 nm-sized gold colloid for enhanced hepatocytes proliferation. Biomaterials 2004;25:3445-3451. [15] Hsu S, Chou C, Tseng S. Enhanced thermal and mechanical properties in polyurethane/Au nanocomposites. Macromol Mater Eng 2004;289:1096-1101. [16] Hsu S, Chou C. Enhanced biostability of polyurethane containing gold nanoparticles. Polym Degradation Stab 2004;85:675-680. [17] David D, Staley H. Analytical chemistry of the polyurethane. New York:Wiley-Interscience; 1969, p.357-359. [18] Christenson E, Dadsetan M, Wiggins M, Anderson J, Hiltner A. Poly(carbonate urethane) and poly(ether urethane) biodegradation: In vivo studies. J Biomed Mater Res 2004;69A:407-416. [19] Hsu S, Tang C, Lin C. Biocompatibility of poly(epsilon-caprolactone)/ poly(ethylene glycol) diblock copolymers with nanophase separation. Biomaterials 2004;25:5593-5601. [20] Naim J, van Oss C, Ippolito K, Zhang J, Jin L, Fortuna R, Buehner N. In vitro activation of human monocytes by silicones. Colloids Surf B 1998;11:79-86. [21] Brand-Williams W, Cuvelier M, Berset C. Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss Technol 1995;28:25-30. [22] Pandey R, Urban M. Surface Phase Partitioning in Film Formation of Waterborne Polyurethanes. Monte Carlo Simulations and Internal-Reflectance IR Imaging. Langmuir 2004;20:2970-2974. [23] Otts D, Cueva-Parra L, Pandey R, Urban M. Film Formation from Aqueous Polyurethane Dispersions of Reactive Hydrophobic and Hydrophilic Components; Spectroscopic Studies and Monte Carlo Simulations. Langmuir 2005; 21:4034-4042. [24] Dalby M, Giannaras D, Riehle M, Gadegaard N, Affrossman S, Curtis A. Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topography. Biomaterials 2004;25:77-83. [25] Dalby M, Yarwood S, Riehle M, Johnstone H, Affrossman S, Curtis A. Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp Cell Res 2002;276:1-9. [26] Buttiglieri S, Pasqui D, Migliori M, Johnstone H, Affrossman S, Sereni L, Wratten ML, Barbucci R, Tetta C, Camussi G. Endothelization and adherence of leucocytes to nanostructured surfaces. Biomaterials 2003;24:2731-2738. [27] Hsu S, Kao Y. Cell attachment and proliferation on poly(carbonate)urethanes with various degrees of nanophase separation. Macromol Biosci 2004;4:891-900. [28] Hsu S, Kao Y. Biocompatibility of poly(carbonate)urethanes with various degrees of nanophase separation. Macromol Biosci 2005;5:246-253. [29] Voie Ø, Tysklind M, Andersson P, Fonnum F. Activation of respiratory burst in human granulocytes by polychlorinated biphenyls: a structure-activity study. Toxicol Appl Pharmacol 2000;167:118-124. [30] Ahimou F, Paquot M, Jacques P, Thonart P, Rouxhet PG.. Influence of electrical properties on the evaluation of the surface hydrophobicity of Bacillus subtilis. J Microbiol Methods 2001;45:119-126. [31] Moulton S, Barisci J, Bath A, Stella R, Wallace G. Investigation of protein adsorption and electrochemical behavior at a gold electrode. J Colloid Interface Sci 2003;261:312-319. [32] Mohr C, Hofmeister H, Radnik J, Claus P. Identification of active sites in gold-catalyzed hydrogenation of acrolein. J Am Chem Soc 2003;125:1905-1911. [33] Esumi K, Houdatsu H, Yoshimura T. Antioxidant action by gold-PAMAM dendrimer nanocomposites. Langmuir 2004;20:2536-2538. [34] Esumi K, Takei N, Yoshimura t. Antioxidant-potentiality of gold_/chitosan nanocomposites. Colloid Surface B 2003;32:117-123. [35] Christenson E, Anderson J, Hiltner A. Antioxidant inhibition of poly(carbonate urethane) in vivo biodegradation. J Biomed Mater Res 2006;76A:480-490. [36] McNally A, Anderson J. Foreign body-type multinucleated giant cell formation is potently induced by alpha-tocopherol and prevented by the diacylglycerol kinase inhibitor R59022. Am J Path
摘要: 論文第一部分採用幾丁聚醣與聚乙烯醇發展為水膠型神經導管的材料,對混摻物性質及生物相容性進行研究,並評估短期對於周邊神經損傷的回復程度,由功能恢復率及組織學分析數據,證實幾丁聚醣或幾丁聚醣/聚乙烯醇導管(70:30)是周邊神經修復較佳的選擇。考慮適當的機械強度,幾丁聚醣/聚乙烯醇導管(70:30)最適合用於周邊神經修復。 本論文第二部分研究一奈米相分離的生物可降解高分子的細胞效應,使用聚己內酯-聚乙烯醇雙團聯式共聚合物表面,調查奈米小島對纖維母細胞及內皮細胞貼附及增生的影響。結果顯示在雙團聯式共聚合物中增加聚乙烯醇鏈段會改善表面親水性,而細菌的附著性會被抑制。PCL-PEG 23:77表面具有奈米形態,內皮細胞、血小板及單核球在PCL-PEG 77:23表面貼附的數目被抑制,而在PCL-PEG 23:77會增加。然而在PCL-PEG 23:77表面上,血小板及單核球活化的數目是減少的。如同血小板及單核球活化程度降低,PCL-PEG 23:77 對細胞具有較好的反應。另一方面,調查奈米小島對於不同種類細胞如纖維母細胞及內皮細胞移動行為之影響,其中基質的水滑動角被量測,以曠時攝影系統結合光學顯微鏡調查細胞移動速度,發現較快的細胞移動速率與基質具有較小的滑動角有關 本論文第三部份研究奈米複合材料生物效應,製備不同形式的聚胺酯-金奈米粒子之複合材料,其中含43.5 ppm金的聚醚型聚胺酯的複合材料顯示,相對於聚胺酯或是不同含量金之聚醚型聚胺酯複合材料,具有增加細胞增生、減少血小板及單核球活化及較少的細菌附著,良好的生物相容性與複合材料表面形態變化有關。在含43.5 ppm金的聚醚型聚胺酯複合材料中發現氧化降解作用被抑制,氧化穩定性的增加與奈米複合材料較高的自由基清除能力有關。另一方面,針對聚酯型聚胺酯-金的奈米複合材料之型態、熱性質、生物相容性、氧化降解及自由基清除能力進行調查,當聚酯型聚胺酯奈米複合材料中含有定量的金奈米粒子(43.5至65 ppm)顯示理想的熱性質及生物性質。藉由原子力顯微鏡確認,在含有43.5 ppm或65 ppm金奈米粒子之聚酯型聚胺酯奈米複合材料中顯出不同的表面形態,相對於聚酯型聚胺酯或是不同濃度金的聚酯型聚胺酯複合材料,顯示出具有增加細胞增生、減少血小板及單核球活化及較少的細菌附著。聚胺酯及其奈米複合材料對氧化降解作用都具有抵抗性,但奈米複合材料有較大的自由基清除能力。植入老鼠19天後,奈米複合材料顯示有較小的纖維包膜厚度,表示具有低度的組織反應。奈米複合材料僅含有非常低量之金奈米粒子(43.5至65 ppm),但生物相容性的確顯著提高,歸因於表面形態的顯著變化及自由基清除能力的結果。
In the first part, a method to prepare hydrogel nerve conduit based on chitosan and PVA was developed. The materials was characterized and the in vitro biocompatibility was investigated. The effect on repair of peripheral nerve injury in short time was be evaluated in animal studis. The functional assessment and histological analyse demonstrated that chitosan and chitosan/PVA 70 /30 conduits were better choices for nerve regeneration. In the second part, PCL/ PEG diblock copolymers was used as model surfaces to examine the effect of nanoislands on attachment, proliferation and migration of fibroblasts, and endothelial cells. Our results showed that surface hydrophilicity improved with the increased PEG segments in diblock copolymers and that bacteria adhesion was inhibited by increased PEG contents. PCL-PEG 23:77 showed nanotopography on the surface. The number of adhered endothelial cells, platelets and monocytes on diblock copolymer surfaces was inhibited in PCL-PEG 77:23 and enhanced in PCL-PEG 23:77. Nevertheless, the platelet and monocyte activation on PCL-PEG 23:77 was reduced. PCL-PEG 23:77 had better cellular response as well as lower degree of platelet and monocyte activation. Moreover, the effect of nanoislands on migration of different cells including fibroblasts and endothelial cells was investigated. The water sliding angle of the substrates was measured. The cell migration rate was examined under a real-time optical microscope. It was found that a greater cell migration rate correlated with the smaller sliding angle of the substrate. In the third part, two types of polyurethane-gold nanocomposites were prepared. The poly(ether)urethane-gold nanocomposite at 43.5 ppm of gold showed enhanced cellular proliferation, reduced platelet and monocyte activation and much less bacterial adhesion, relative to PU alone or nanocomposites at the other Au contents, in general. This better biocompatibility was associated with the surface morphological change in the presence of Au. The oxidative degradation in nanocomposite at 43.5 ppm of gold was also inhibited. The increased oxidative stability corresponded to the greater free radical scavenging ability of the nanocomposites. Moreover, the morphology, thermal properties, biocompatibility, oxidative degradation and free radical scavenging ability of the poly(ester)urethane-gold nanocomposites were characterized in vitro. The nanocomposite containing a certain amount (43.5-65 ppm) of gold demonstrated the optimal thermal and biological properties. The nanocomposites at 43.5 ppm or 65 ppm of gold exhibited a different surface morphology confirmed by the AFM. They also showed enhanced cellular proliferation, reduced platelet and monocyte activation and much less bacterial adhesion, relative to PU alone or nanocomposites at the other Au contents, in general. This better biocompatibility was associated with the surface morphological change in the presence of Au. PU and nanocomposites were all resistant to oxidative degradation. The nanocomposites had greater free radical scavenging ability. After 19 days of rat implantation, the nanocomposites also showed lower tissue reaction indicated by the smaller fibrous capsule thickness. The significant enhancement of biocompatibility in the nanocomposites in such low Au contents (43.5-65 ppm) appeared to be a result of the extensively modified surface morphology as well as the free radical scavenging effect in the presence of Au.
URI: http://hdl.handle.net/11455/3550
其他識別: U0005-0502200710181300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0502200710181300
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.