Please use this identifier to cite or link to this item:
標題: 非標定式阻抗分析免疫感測器於Enrofloxacin藥物的檢測
Label-Free Impedimetric Immuno-Sensor for the Detection of Enrofloxacin
作者: 林家鴻
Lin, Chia-Hung
關鍵字: enrofloxacin
electrochemical impedance spectroscopy
出版社: 生物產業機電工程學系所
引用: [1] F. J. Angulo, K. R. Johnson, R. V. Tauxe, M. L. Cohen, Origins and consequences of antimicrobial-resistant nontyphoidal Salmonella: implications for the use of fluoroquionolones in food animal, Microb. Drug Resist. 6 (2000) 77-83. [2] P. M. Vancutsem, J. G. Babish, W. S. Schwark, The fluoroquinolone antimicrobials: structure, antimicrobial activity, pharmacokinetics clinical use in domestic animal and toxicity, Cornell Vet. 80 (1990) 173-186. [3] B. Martinsen, T. E. Horsberg, Comparative single-dose pharmacokinetics of four quinolones, oxolinic acid, flumequine, sarafloxacin, and enrofloxacin, in Atlantic salmon (Salmo salar) held in seawater at 10 degrees C, Antimicrob. Agents Chemother. 39 (1995) 1059-1064. [4] J. C. Yorke, P. Froc, Quantitation of nine quinolones in chicken tissues by high-performance liquid chromatography with fluorescence detection, J. Chromatogr. A 882 (2000) 63-77. [5] J. Duan, Z. Yuan, Development of an Indirect Competitive ELISA for Ciprofloxacin Residues in Food Animal Edible Tissues, J. Agric. Food Chem. 49 (2001) 1087-1089. [6] Use of quinolones in food animals and potential impact on human health, WHO/EMC/ZDI/98.10 (1998) 9-10. [7] W. H. Sheng, Y. C. Chen, J. T. Wang, S. C. Chang, K. T. Luh, W. C. Hsieh, Emerging fluoroquinolone-resistance for common clinically important gram-negative bacteria in Taiwan, Diagn. Microbiol. Infect. Dis. 43 (2002) 141-147. [8] S. Pakpinyo, J. Sasipreeyajan, Molecular characterization and determination of antimicrobial resistance of Mycoplasma gallisepticum isolated from chickens, Vet. Microbiol. 128 (2007) 59-65. [9] European Commission (1999) Regulation 99/508/EEC, 9 March. Off J European Commission L60, p 305 [10] FDA announces final decision about veterinary medicine source. FDA, USA, 28 July 2005 Docket No. 2000N-1571. [11] A. Navalón, R. Blanc, L. Reyes,N. Navas, J. L. Vílchez, Determination of the antibacterial enrofloxacin by differential-pulse adsorptive stripping voltammetry, Anal. Chim. Acta 454 (2002) 83-91. [12] M. Lizondo, M. Pons, M. Gallardo, J. Estelrich, Physicochemical properties of enrofloxacin, J. Pharm. Biomed. Anal. 15 (1997) 1845-1849. [13] S. Mostafa, M. EI-Sadek, E. A. Alla, Spectrophotometric determination of ciprofloxacin, enrofloxacin and pefloxacin through charge transfer complex formation, J. Pharm. Biomed. Anal. 27 (2002) 133-142. [14] S. Mostafa, M. EI-Sadek, E. A. Alla, Spectrophotometric determination of enrofloxacin and pefloxacin through ion-pair complex formation, J. Pharm. Biomed. Anal. 28 (2002) 173-180. [15] D. Barrón, E. Jiménez-Lozano, J. Cano, J. Barbosa, Determination of residues of enrofloxacin and its metabolite ciprofloxacin in biological materials by capillary electrophoresis, J. Chromatogr. B 759 (2001) 73-79. [16] M. Hernández, C. Aguilar, F. Borrull, M. Calull, Determination of ciprofloxacin, enrofloxacin and flumequine in pig plasma samples by capillary isotachophoresis-capillary zone electrophoresis, J. Chromatogr. B 772 (2002) 163-172. [17] H.-W. Sun, P. He, Y.-K. Lv, S.-X. Liang, Effective separation and simultaneous determination of seven fluoroquinolones by capillary electrophoresis with diode-array detector, J. Chromatogr. B 852 (2007) 145-151. [18] F. J. Lara, A. M. García-Campaña, F. Alés-Barrero, J. M. Bosque-Sendra, L. E. García-Ayuso, Multiresidue method for the determination of quinolone antibiotics in bovine raw milk by capillary electrophoresis-tandem mass spectrometry, Anal. Chem. 78 (2006) 7665-7673. [19] M. J. Souza, C. F. Bittencourt, L. M. Morsch, LC determination of enrofloxacin, J. Pharm. Biomed. Anal. 28 (2002) 1195-1199. [20] E. Turiel, A. Martín-Esteban, J. L. Tadeo, Multiresidue analysis of quinolones and fluoroquinolones in soil by ultrasonic-assisted extraction in small columns and HPLC-UV, Anal. Chim. Acta 562 (2006) 30-35. [21] S.-W. Hung, C.-W. Shih, B.-R. Chen, C.-Y. Tu, Y.-F. Ling, L.-T. Tsou, S.-P. Ho, W.-S. Wang, A new detection technique for fluoroquinolone-conjugated proteins by high performance liquid chromatography with UV/fluorescence detectors, J. Food Drug Anal. 15 (2007) 71-74. [22] O. R. Idowu, J. O. Peggins, Simple, rapid determination of enrofloxacin and ciprofloxacin in bovine milk and plasma by high-performance liquid chromatography with fluorescence detection, J. Pharm. Biomed. Anal. 35 (2004) 143-153. [23] S. Zhao, H. Jiang, X. Li, T. Mi, C. Li, J. Shen, Simultaneous determination of trace levels of 10 quinolones in swine, chicken and shrimp muscle tissues using HPLC with programmable fluorescence detection, J. Agric. Food Chem. 55 (2007) 3829-3834. [24] E. A. Christodoulou, V. F. Samanidou, Multiresidue HPLC analysis of ten quinolones in milk after solid phase extraction: validation according to the European Union Decision 2002/657/EC, J. Sep. Sci. 30 (2007) 2421-2429. [25] S. J. Zhao, H. Y. Jiang, S. Y. Ding, X. L. Li, G. Q. Wang, C. Li, J. Z. Shen, A reliable LC method with fluorescence detection for quantification of (fluoro)quinolone residues in chicken muscle, Chromatrogrphia 65 (2007) 539-544. [26] Z. Wang, Y. Zhu, S. Ding, F. He, R. C. Beier, J. Li, H. Jiang, C. Feng, Y. Wan, S. Zhang, Z. Kai, X. Yang, J. Shen, Development of a monoclonal antibody-based broad-specificity ELISA for fluoroquinolone antibiotics in foods and molecular modeling studies of cross-reactive compounds, Anal. Chem. 79 (2007) 4471-4483. [27] A.-C. Huet, C. Charlier, S. A. Tittlemiers, G. Singh, S. Benrejeb, P. Delahaut, Simultaneous determination of (fluoro)quinolone antibiotics in kidney, marine product, eggs, and muscle by enzyme-linked immunosorbant assay (ELISA), J. Agric. Food Chem. 54 (2006) 2822-2827. [28] W.-S. Wang, C.-W. Shih, S.-W. Hung, Y.-F. Ling, C.-Y. Tu, B.-R. Chen, S.-P. Ho, Development and application of the enzyme-linked immunosorbent assay residual detection kits for fluoroquinolones, Taiwan Vet. J. 32 (2006) 301-311. [29] H. Watanabe, A. Satake, Y. Kido, A. Tsuji, Monoclonal-based enzyme-linked immunosorbent assay and immunochromatrographic assay for enrofloxacin in biological matrices, Analyst 127 (2002) 98-103. [30] 賴志河 張芸潔 “醫護微生物及免疫學”,新文京開發出版股份有限公司 2002 [31] A. J. Cunningham, “Introduction to Bioanalytical Sensors” ,New York:John Wiley&SONS, INC 1998. [32] B. Lu, E. I. Iwuoha, M. R. O. Smyth, R. Kennedy, “Development of an “electrically wired” amperometric immunosensor for the determination of biotin based on a non-diffusional redox osmium polymer film containing an antibody to the enzyme label horseradish peroxidase”Anal. Chim. Acta 345 (1997) 59-66. [33] J. Wang, P. V. A. Pamidi, K. R. Rogers,“Sol-Gel-Derived Thick-film amperometric immunosensors”Anal. Chem. 70 (1998) 1171. [34] F. Scheller, chvbert, F.Techniques and Instrumentation in Analytical Chemistry: Biosensers., Elserver (1992). [35] J. Wang,; B. Tian,; K. R Rogers,“Thick-film electrochemical immunosensor based on stripping potentiometric detection of a metal ion label” Anal. Chem. 70 (1998) 1682-1685. [36] A. J. Bard,L. R. Faulkner, “ELECTROCHEMICAL METHODS ,Fundamentals and Application:2nd Edition” , New York:John Wiley&SONS,INC 2001 [37] 黃進益 “電化學的原理及應用”,高立圖書有限公司 1998 [38] Y. Kang, G. L. Robert, “Effects of ionic strength and pH on endotoxin removal efficiency and protein recovery in an affinity chromatography”, Process Biochem. 36 (2000) 85-92. [39] I. Navra´tilova´, P. Skla´dal, “The immunosensors for measurement of 2,4-dichlorophenoxyacetic acid based on electrochemical impedance spectroscopy”, Bioelectrochemistry 62 (2004) 11-18. [40] M. Rahman, M. Shiddiky, J. Park, “An impedimetric immunosensor for the label-free detection of bisphenol A”, Biosens. Bioelectron. 22 (2007) 2464-2470. [41] G. Lillie, P. Payne ,P. Vadgama , “Electrochemical impedance spectroscopy as a platform for reagentless bioaffinity sensing” , Sens. Actuator B-Chem. 78 (2001) 249-256. [42] B. Corry , J. Uilk , C. Crawley, “Probing direct binding affinity in electrochemical antibody-based sensors” , Anal. Chim. Acta 496 (2003) 103-116. [43] D. Tang, R. Yuan, Y. Chai, L. Zhang, X. Zhong , “Preparation and application on a kind of immobilization method of anti-diphtheria for potentiometric immunosensor modified colloidal Au and polyvinyl butyral as matrixes” , Sens. Actuator B-Chem. 104 (2005) 199-206. [44] X. Li, R. Yuan , Y. Chai, L. Zhang, Y. Zhuo, Y. Zhang , “Amperometric immunosensor based on toluidine blue/nano-Au through electrostatic interaction for determination of carcinoembryonic antigen” , J. Biotechnol. 123 (2006) 356-366. [45] D. Tang , R. Yuan, Y. Chai , Y. Fu , J. Dai , Y. Liu , X. Zhong , “New amperometric and potentiometric immunosensors based on gold nanoparticles/tris(2,2_-bipyridyl)cobalt(III) multilayer films for hepatitis B surface antigen determinations ” , Biosens. Bioelectron. 21 (2005) 539-548. [46] J. Yang, T. Yang, Y. Feng, K. Jiao , “A DNA electrochemical sensor based on nanogold-modiWed poly-2,6-pyridinedicarboxylic acid Wlm and detection of PAT gene fragment” , Anal. Biochem. 365 (2007) 24-30. [47] S.J. Ding, B.W. Chang, C.C. Wu, M.F. Lai, H.C. Chang, Impedance spectral studies of self-assembly of alkanethiols with different chain lengths using different immobilization strategies on Au electrodes. Anal. Chim. Acta 554 (2005) 43-51. [48] Y. Shi, R. Yuan, Y. Chai and X. He,. Development of an amperometric immunosensor based on TiO2 nanoparticles and gold nanoparticles. Electrochim. Acta 52 (2007) 3518-3524. [49] H. Huang, P. Ran, Z. Liu, Impedance sensing of allergen–antibody interaction on glassy carbon electrode modified by gold electrodeposition, Bioelectrochemistry 70 (2007) 257-262. [50] H. Huang, Z. Liub, X. Yang , Application of electrochemical impedance spectroscopy for monitoring allergen–antibody reactions using gold nanoparticle-based biomolecular immobilization method, Anal. Biochem. 356 (2006) 208-214. [51] S. Centi , S. Laschi, M. Mascini , Improvement of analytical performances of a disposable electrochemical immunosensor by using magnetic beads, Talanta 73 (2007) 394-399. [52] T. Balkenhohl , F. Lisdat, Screen-printed electrodes as impedimetric immunosensors for the detection of anti-transglutaminase antibodies in human sera, Anal. Chim. Acta 597 (2007) 50-57. [53] D. Tang, R. Yuan, Y. Chai, X. Zhong, Novel potentiometric immunosensor for the detection of diphtheria antigen based on colloidal gold and polyvinyl butyral as matrixes, Biochem. Eng. J. 22 (2004) 43-49. [54] L. Wei, T. C. Xinyan, Reagentless aptamer based impedance biosensor for monitoring a neuro-inflammatory cytokine PDGF, Biosens. Bioelectron. 23 (2007) 218-224. [55] Y . Yun , A . Bange , W . Heineman , H . Halsall , A nanotube array immunosensor for direct electrochemical detection of antigen-antibody binding, Sens. Actuator B-Chem. 123 (2007) 177-182. [56] G. Friesen, M. E. Ozsar, E. D. Dunlop, “Impedance model for CdTe solar cells exhibiting constant phase element behaviour”, Thin Solid Films 361-362 (2000) 303-308. [57] D. Sehgal, I. K. Vijay, “A method for the high efficiency for water-soluble carbodiimide-mediated amidation”, Anal. Biochem. 218 (1994) 87-91.
摘要: Enrofloxacin是fluoroquinolones家族中最常被使用的抗菌劑之一,用來預防與治療家禽與畜類的疾病。研究中以11-mercapto-undecanoic acid (MUA)與金電極表面進行自組性單層膜之共架性鍵結,然後用EDC/NHS活化MUA尾端COOH官能基,使抗enrofloxacin抗體能被固定在MUA上以進行enrofloxacin檢測,電極修飾特性與免疫反應則在含有等量Fe(CN)6 3-/4-的磷酸緩衝溶液(PBS)中,以電化學阻抗分析法(electrochemical impedance spectroscopy, EIS)和循環伏安法(cyclic voltammetry, CV)進行分析。研究結果顯示最佳修飾條件為:(1)在37℃、15% RH的條件時MUA修飾最穩定;(2)在24小時內大部分的MUA可被EDC/NHS活化;(3)抗體在37℃、15%RH固定2小時最穩定;(4) bovine serum albumin (BSA)的阻隔效應在1小時內可達穩定;(5)利用Tween 20清洗10分鐘即可清除非特異性鍵結。在等效電路模擬上,一個電阻串聯兩個並聯電阻與電容(2R//C)之等效電路,可分辨電極與修飾膜間和修飾膜與溶液間的特性,而一個電阻串聯一個並聯電阻與電容(1R//C)之等效電路則具有分析簡單與低變異性等特點。研究結果也顯示,修飾條件的最佳化可使enrofloxacin檢測極限從10 ng/ml降低到1 pg/ml,此非標定式免疫感測器可以大幅簡化免疫檢測的步驟,並能提供足夠靈敏之檢測極限,將來可用於食品安全或臨床醫學低濃度生物分子的檢測。
Enrofloxacin, that is most extensive approval antibiotic in the fluoroquinolone family, is frequently used to treat and prevent the disease of food-producing animals. To immobilize the specific antibodt for enrofloxacin on an electrode can develop a lable-free immunosensor. The immunosensors were prepared by covalently binding anti-enrofloxacin antibodies onto a 11-mercapto-undecanoic acid (MUA) monolayer with the pretreatment of EDC/NHS activation on a gold electrode. Each modification process for the Au electrodes was investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) in phosphate buffer saline(PBS) solution with Fe(CN)6 3-/4-. The optimal experiment conditions are : (1) MUA modification at 37℃ in 15% RH is more stable, (2) EDC/NHS can activate the most part of MUA after 24 h, (3)antibody immobilized at 37℃ in 15% RH presents stable after 2 h, (4) after 1 h, bovine serum albumin(BSA) blocking can finish, and(5) the nonspecific adsorption can be rinsed out for 10 min in Tween 20. In the equivalent circuit models, one resistor in series with two parallel RC circuits (2R//C) can clearly distinguish the impedance properties of the electrode-membrane and membrane-solution interface, and one resistor in series with one parallel circuit of resistor and capacitor (1R//C) possesses the advantage of simplification and stability of measurement. The optimal experiment conditions promote the limit of detection from 10 ng/ml to 1 pg/ml. The label-free impedance immunosensor supplies a sensitive and simple method for the enrofloxacin detection. In the future, the sensor can be applied to detect low concentration bio-molecule in food safety and clinical medical field.
其他識別: U0005-1308200821563100
Appears in Collections:生物產業機電工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.