Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35520
標題: The development of Shiitake Mushroom extrudate and the analysis of its anti-oxidative properties
香菇擠壓休閒食品之開發及其抗氧化特性之研究
作者: 李宗翰
Li, Zong-Han
關鍵字: Mushroom
香菇
Extrusion
Antioxidant
擠壓
抗氧化
出版社: 生物產業機電工程學系所
引用: 1.尤新、潘子明。2001。機能性發酵製品。台北:藝軒圖書出版社。 2.王伯徹、陳啟楨、華傑。1998。食藥用菇類的培養與應用。新竹:財團法人食品工業發展研究所出版。 3.石坤城。2001。機器視覺應用在香菇選別系統之研究。碩士論文。屏東:國立屏東科技大學食品科學系。 4.卯曉嵐。1989。中國的食用與藥用大型真菌。微生物學通報。216:290~297。 5.行政院農業委員會農糧署。2005。農業統計年報。 6.朱淯維。2003。荷葉乙醇萃取物抗氧化性之探討。碩士論文。台北:國立台灣大學食品科技研究所。 7.行政院院衛生署。2002。台灣地區食品營養成份資料庫。 8.杜自彊。1977。食用菇栽培技術。豐年叢書743-2。台北:豐年社。 9.呂政義、張曙明、韓建國。1987。以擠壓機成型法製備米食產品加工條件之探討。食品科學14(4):342~350。 10.邱明慧。2006。香菇於化學及細胞平台之抗氧化能力探討。碩士論文。新竹:國立交通大學生物科技研究所。 11.邵貽沅。2002。甘藷品種抗氧化性之研究。國科會專題研究計畫成果報告書。台北:實踐大學食品營養學系。 12.宋國祥。2000。添加綠茶粉於米食膨發食品最適操作條件之研究。碩士論文。台中:國立中興大學農業機械工程研究所。 13.林欣榜。1999。幾丁物質在食品加工上之應用。食品工業31:26-36。 14.吳宗沛。1990。米穀擠壓膨發食品之纖維強化及其品質之改進。博士論文。台北:國立台灣大學食品科技研究所。 15.拱玉郎。1997。天然抗氧化劑發展現況。食品工業29:29~37。 16.涂春木。1994。單軸擠壓機加工米穀粉物理特性之研究。碩士論文。台中:國立中興大學農業機械工程研究所。 17.郭孝成。2004。市售三種食用菇正己烷萃取物清除自由基能力之探討。碩士論文。屏東:國立屏東科技大學食品科學系。 18.康名慰。2003。香菇菌種之胞外水溶性多醣體分析。碩士論文。新竹:國立交通大學生物科技研究所。 19.陳廷昌。2003。新社鄉太空包香菇生產效率之研究-資料包絡分析法之應用。碩士論文。台中:國立中興大學應用經濟學系。 20.陳淳和。1996。飼料玉米擠壓產品之理化特性研究。碩士論文。台中:國立中興大學農業機械工程研究所。 21.黃俊嘉。2006。添加芝麻粕擠壓休閒產品之開發及其抗氧化活性分析。碩士論文。台中:國立中興大學生物產業機械工程研究所。 22.黃榮丞。2005。添加蕃茄紅素隻玉米擠壓產品開發及其抗氧化活性分析。碩士論文。台中:國立中興大學生物產業機械工程研究所。 23.黃富國。2005。酵母菌突變株 S. cerevisiae FC-3 生產 γ-GC 與 GSH 之最適化及相關生合成酵素之基因選殖。碩士論文。雲林:國立雲林科技大學化學工程研究所。 24.張明義。2001。模孔孔徑與蕎麥粉絲添加比例開發蕎麥擠壓食品最適條件之研究。碩士論文。台中:國立中興大學農業機械工程學研究所。 25.彭錦樵。1993。擠壓技術專家-米勒先生演講專輯。美國飼料穀物協會。 26.楊淑華。2004。薏仁品種及白米添加比例對擠壓產品物理化學及抗氧化特性之影響。碩士論文。台中:國立中興大學生物產業機電工程研究所。 27.鄔文盛、陳輝煌、龔鳴盛、孫寶年。1989。米之雙軸擠壓加工(Ⅰ)水分和油脂添加對米擠壓產品特性之影響。食品科學16(4):305~318。 28.楊新美。1995。中國食用菌栽培學。China:中國農業出版社。 29.廖遠東。2002。香菇多醣及其水解產物生理活性之探討。菇類應用研討會暨「建立生技產品精緻化與生物質量產能擴大」之實作教學計畫執行成果觀摩會論文摘要集。高雄:輔英科技大學環境與生物技術研究中心生物技術系。 30.廖英明。1999。台灣香菇栽培發展史。農業世界雜誌社。農業世界雜誌193期。 31.增山及成。1999。自由基之陰謀。健康世界叢書。台北:健康世界雜誌社。 32.潘憶萱。1997。胡蘿蔔渣應用於高纖擠壓產品之研究。碩士論文。台中:國立中興大學農業機械工程研究所。 33.顏名聰。2005。香菇柄幾丁質與幾丁聚醣之理化性質與生理活性及其應用。博士論文。台中:國立中興大學食品暨應用生物科技系。 34.魏開舜。2002。原料配方對擠壓緩衝產品理化機械及生物分解特性之影響。碩士論文。台中:國立中興大學生物產業機電工程研究所。 35.蕭世傑。1998。原料配方及螺溝寬度對擠壓緩衝產品理化及生物分解特性之研究。碩士論文。台中:國立中興大學農業機械工程研究所。 36.Aruoma, O. I., B. Halliwell and G. Williamson. 1998. In vitro methods for characterizing potential prooxidant and antioxidant actions of nonnutritive substances in plant foods. In“Antioxidant methodology in vivo and in vitro concepts. ”ed., Ch. 10, p. 173~204. AOCS press, Champaign, Illinois. 37.Box, G. E. P. and D. W. Behnken. 1960. Some new three level designs for the study of quantitative variables. Technometrics. 2:455~462. 38.Buring, JE. and CH. Hennekens. 1997. Antioxidant vitamins and cardiovascular disease. Nutr. Rev. 55:53~60. 39.Brand-Williams, W., M.E. Cuvelier and C. Berset. 1995. Use of a free radical method to evaluate antioxidant activity. Lebensm-Wiss. U. Technol. 28: 25~30. 40.Chihara, G., J. Hamuro, Y. Maeda, Y. Arai and F. Fukuoka. 1970. Fractionation and purification of the polysaccharides with marked antitumor activity, especially lentinan, from Lentinus edodes (an edible mushroom). Cancer Res. 30(11):2776~2781. 41.Dinis, T.C.P., V.M.C. Madeira and L.M. Almeida. 1994. Action of phenolic derivatives (acetaminophen, salicylate and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and peroxyl radical scavengers.Arch. Biochem. Biophys. 315:161~169. 42.Dziezak, J. D. 1990. Taking the gamble out of produce development. Food Technology. 44(6):110~117. 43.Dziezak, J. D. 1986. Preservatives:Antioxidants. Food Technology. 40:94~102. 44.Giese, J. 1996. Antioxidants:Tool for preventing lipid oxidation. Food Tech. November. 73~82. 45.Gordon, M.H. 1990. The mechanism of antioxidant action in vitro. Nutr.66:116-122. 46.Halliwell, B. 1996. Antioxidants in human health and disease. Annu. Rev. Nutr. 16:33~50. 47.Halliwell, B., M.A. Murcia, S. Chirico and O.I. Aruoma. 1995. Free radicals and antioxidants in food and in vivo:what they do and how they work. Crit Rev Food Sci. Nutr. 35:7~20. 48.Halliwell, B. and J.M.C. Gutteridge. 1989. Free radicals, ageing and disease. In Free Radicals in Biology and Medicine, ed. p. 484~487 Clarendon Press, Oxford. 49.Harper, J.M. 1981. Extrusion of Foods, Vol.ⅠandⅡ. CRCPress, Boca Raton, FL. 50.Jacobson, E. S., E. Hove and H. S. Emery. 1995. Antioxidant function of melanin in black fungi. Infect. Immun. 63: 4944-4945. 51.Jacob, R. A. 1995. The integrate antioxidant system. Nutr Res. 15(5):755~766. 52.Kim, W. G., I. K. Lee, J. P. Kim, I. J. Ryoo, H. Koshino and I. D. Yoo. 1997. New indole derivatives with free radical scavenging activity from Agrocybe cylindracea. J. Nat. Prod. 60:721~723. 53.Kansci, G., C. Genot, A. Mrynier and G. Gandemer. 1997. The antioxidant activity of carnosine and its consequence in the volatile profiles of liposome duringiron / ascorbate induced phospholipids oxidant. Food Chem. 60:165~175. 54.Liu, F., V. E. C. Ooi and S. T. Chang. 1996. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci. Vol. 60. 10:63~771. 55.Larson, R. A. 1988. The antioxidants of higher plants. Phytochem. 27:969~978. 56.Lawton, J. W., A. B. Davis and K. C. Behnre. 1985. High-temperature, short time extrusion of wheat gluten and bran-like fraction. Cereal Chem. 62:266-267. 57.Launay, B. and J.M. Lisch. 1984. Twin-screw extrusion cooking of starches : Flow behavior of starch pastes, expansion and mechanical properties of extrudates in “Extrusion cooking technology” R. Jowitt(ed) : P.159 Applied Science . Pub. Ltd, London. 58.Lingnert, H., K. Vallentin and C. E. Eriksson. 1979. Measurement of antioxidant effect in model system. J. Food Proc. Presv. 3: 87-103. 59.Myers, R. H. and D. C. Montgomery. 2002. Response Surface Methodology:Process and Product Optimization Using Designed Experiments, 2nd edition, John Wiley and Sons, New York, NY . 60.Oyaizu, M. 1986. Studies on products of browning reaction:Antioxidative activities of products of browning reaction prepaed from glucosamine. Jpn. J. Nuttr. 44:307~315. 61.Peng, J., H.E. Huff and F. Hsieh. 1994. An RTD determination method for extrusion cooking. J. Food Proc and Pres. 18(4):263~277. 62.Pegler, D. N. 1983. The genus Lentinula edodes. A world monograph. Kew Bull Addit Ser Sydowia. 36:227~339. 63.Royse, D. J. 1997. Specialty mushrooms and their cultivation. Hort. Rev. 19:59~97. 64.Salah, N., N. J. Miller, G. Paganga, L. Tijburg, G. P. Bolwell and C. A. Rice-Evans. 1995. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch. Biochem. Biophys. 322: 339-346. 65.Shimada, K., K. Fujikawa, K. Yahara and T. Nakamura. 1992. Antioxidative properties of xathane on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem. 40:945~948. 66.Saito, H., T. Ohki, N. Takasuke and T. Sasaki. 1977. Acarbon-13 NMR-soectral study of a gel-forming, branched (1→3)-β-D-glucan, (lentinan) from Lentinus edodes, and its acid-degarded fractions. Structure, and dependence of conformation on the molecular weight. Carbohydr. Res. 58(2):293~305.
摘要: Mushrooms are a traditional Chinese medicine and also commonly used as food. This study was divided into two sections. First of all, the response surface methodology (RSM) was used to analyze the effect of mushroom powder level (8%、10%、15%、20%、22%) and screw speed (150rpm、172rpm、225rpm、278rpm、300rpm) on the physical properties such as (radial expansion ratio, longitudinal expansion, bulk density, hardness, max. shear force) and chemical properties such as (water solubility index and water absorbability index) attributes of a corn-based mushroom extrudates. A Box-Behnken design was used to develop models for the objective responses. Individual contour plots of the different responses were overlaid, and regions meeting the optimum were identified at the mushroom level of 14.7% and the screw speed of 207.8 rpm, respectively. Secondly, extrudates used for antioxidant properties tests (scavenging ability on 1,1-diphenyl-2-picrylhydrazyl radicals, chelating ability on ferrous ions, reducing power, and antioxidant activity determined by the conjugated diene method) were prepared according to the optimum mushroom level of 14.7% and the screw speed of 207.8 rpm. Pure mushroom powder, pure corn powder extrudates, Vitamin C, butylated hydroxyanisole (BHA) and vitamin E (a-tocopherol) were used for comparison. At IC50, scavenging abilities on DPPH radicals were 9.859±0.522 mg/m, 17.187±0.335 mg/ml and 32.520±0.798 mg/ml for mushroom powder, mushroom extrudates and corn powder extrudates, respectively; At IC50, chelating abilities of mushroom powder, mushroom extrudates and corn powder extrudates on ferrous ions were 0.848±0.046 mg/ml, 14.961±0.889 mg/ml and 51.608±3.220 mg/ml, respectively; A higher absorbance indicates a higher reducing power. The reducing power of mushroom powder was the best, followed by the mushroom extrudates and corn powder extrudates, respectively; At IC50, antioxidant activity of mushroom powder, mushroom extrudates and corn powder extrudates determined by the conjugated diene method were 0.443±0.055 mg/ml, 1.847±0.891 mg/ml and 6.412±0.756 mg/ml, respectively; After incubation for 15 h, the antioxidant activity for each treatment was slightly decreased. At IC50, antioxidant activity of mushroom powder, mushroom extrudates and corn powder extrudates determined by the conjugated diene method were 0.566±0.062 mg/ml, 1.920±0.937 mg/ml and 8.043±0.588 mg/ml, respectively. Overall, according to the results of these four antioxidant properties, the mushroom powder exhibited the best antioxidant abilities than the mushroom extrudates and corn powder extrudates, respectively.
香菇是營養價值十分高的食物,本研究以添加不同比例之香菇粉於玉米粉中,利用擠壓技術加工製造膨發性休閒食品。研究分為兩階段進行: 第一階段利用添加乾香菇粉比例、螺軸轉速做為擠壓加工之操作參數,以反應曲面法(RSM)之二變數五層級設計,計算出最佳實驗組合。乾香菇粉添加比例範圍為(8%、10%、15%、20%、22%)、擠壓機螺軸轉速範圍為(150rpm、172rpm、225rpm、278rpm、300rpm),計有13組處理,中心點五重複。此階段之實驗探討操作條件對各處理組之物理性質(徑向膨發率、縱向膨發、假密度、硬度值、最大剪切力)以及化學性質(水溶性指標、吸水性指標)之變化,依據各項測定結果,以統計之迴歸分析配合等高線圖繪製,求得最適操作條件之原料配方,香菇粉添加比例為14.7%、螺軸轉速為207.8rpm。 第二階段利用最適操作條件之香菇粉添加比例14.7 %與螺軸轉速207.8 rpm,生產最適配方之擠壓產品。並配合純香菇粉原料、純玉米粉擠壓產品之實驗處理對照組、與BHA、Vitamin C與Vitamin E等之藥品對照組,進行清除DPPH自由基能力、螯合亞鐵離子能力、還原力與抗氧化力(共軛雙烯法)等各項抗氧化特性之測定,以暸解最適配方之香菇擠壓產品的抗氧化功能。清除DPPH自由基能力測定:香菇粉原料、香菇粉擠壓產品與玉米粉擠壓產品之IC50濃度分別為9.859±0.522 mg/ml、17.187±0.335 mg/ml與32.520±0.798 mg/ml。螯合亞鐵離子能力測定:香菇粉原料、香菇粉擠壓產品與玉米粉擠壓產品之IC50濃度分別為0.848±0.046 mg/ml、14.961±0.889 mg/ml與51.608±3.220 mg/ml。還原力測定:測得之吸光值愈高,表示其樣本還原力愈好,三者之中以香菇粉原料還原力效果最佳;香菇粉擠壓產品其次;玉米粉擠壓產品最低。共軛雙烯法之測定:0h之測定結果,香菇粉原料、香菇粉擠壓產品與玉米粉擠壓產品之IC50濃度分別為0.443±0.055 mg/ml、1.847±0.891 mg/ml與6.412±0.756 mg/ml。經由37℃避光15h後,各處理組抑制率皆有些微降低,其15h後之測定結果,香菇粉原料、香菇粉擠壓產品與玉米粉擠壓產品之IC50濃度分別為0.566±0.062 mg/ml、1.920±0.937 mg/ml與8.043±0.588 mg/ml。 綜合以上四種抗氧化功能性測定,以香菇粉效果最佳;香菇粉擠壓產品其次;玉米粉擠壓產品最低,且三者間均有顯著差異。
URI: http://hdl.handle.net/11455/35520
其他識別: U0005-2008200811125800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2008200811125800
Appears in Collections:生物產業機電工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.