Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35530
標題: 高敏感脈搏訊號之量測及應用於生理狀態之研究
High sensitive sphygmus measurement and analysis for physiology status study
作者: 王林懋
Wang, Lin-Mao
關鍵字: high sensitive piezoelectric sensor
高敏感壓電感測器
sphygmus pulse
signal processing
脈搏
訊號處理
出版社: 生物產業機電工程學系所
引用: 1.王傳禎。2001。脈搏訊號之時頻域分析。國立臺灣大學機械工程學研究所碩士論文。 2.王順正。2000。間歇訓練。運動生理週訊48:31。 3.林其毅。1998。台灣犬妊娠之生理研究。國立中興大學獸醫系碩士論文。 4.洪禹利。2001。肥胖患者減重過程中組織阻抗之量測與評估。中原大學醫學工程研究所碩士論文。 5.柳兆榮、李惜惜。1997。血液動力學原理與方法。上海復旦大學出版社。 6.范振臺。2001。可攜式低壓腕部脈搏訊號之量測。中原大學電機工程研究所碩士論文。 7.馬寧、江世臣、李和傑、張學學。2003。激光對皮膚層狀組織作用的非傅立葉效應及光致熱損傷分析。航天醫學與醫學工程16(2):133-137。 8.陳耀勳。2004。心率、PPG和非侵入脈搏波信號之相關性研究。逢甲大學自動控制工程所碩士論文。 9.陳明豐。2005。中醫診斷科學化。中醫醫療雜誌。 10.陳敬修。2004。利用非侵入式Plethysmography信號評估手術病患舒張壓變化趨勢之研究。國立中山大學機械與機電工程系碩士論文。 11.黃世林、孫明異。1995。中醫脈象研究。人民衛生出版社。 12.黃俊凱。1999。血壓量測裝置作業技術規範。教育部顧問室。 13.葉健全。2007。低昇醣指數餅乾試驗成果。台北醫學大學附設醫院臨床中心報告。 14.盛德芳。1999。肺部復健應用於一位支氣管擴張症患者的護理經驗。長庚護理10(4):50-54。 15.詹玉紅、李若新、姜志華、郝俊勤。2006。出汗假人系統特徵方程式與穩定性判定。紡織學刊。 16.游陸路、鄒傳雲、耿鵬。2006。基於Hermite多項式的超寬帶脈衝波形研究7:57-59。 17.楊宗明。2004。應用離散移動式最小平方法誤差於疊代式高/低通濾波器。國立成功大學航空太空工程學系碩士論文。 18.蔡光超、羅仕錡。1990。呼吸生理學。台北藝軒圖書出版社。 19.蔡佳霖。2007。脈搏訊號及心電圖之時頻分析。國立成功大學航空太空工程學系碩博士班碩士論文。 20.謝長倭。2002。自主神經功能研究用脈搏波形諧波分析系統之設計。國立成功大學電機工程學系碩博士班博士論文。 21.Bendat, J. S. and A. G. Piersol. 2000. Random Data Analysis and Measurement Procedures 3rd ed. John Wiley & Sons, New York, Chapters 10 & 11:349-456. 22.Bernardi, L., D. Hayoz, R. Wenzel, C. Passino, A. Calciati, R. Weber, and G. Noll. 1997. Synchronouc and baroceptor-sensitive oscillations in skin microcirculation: evidence for central autonomic control. American Physiological Society273:1867-1878. 23.Burton, A. C. 1939. The range and variability of the blood flow in the human fingers and the vasomotor regulation by body temperature. American Physiological Society127:473-453. 24.Hill, M. and C. Grim. 1991. How to Take a Precise Blood Pressure. American Journal of Nursing 91(2):38-42. 25.Huang, N. E., Z. Sheng, S. R. Leng, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung and H. H. Liu. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond 454:903-995. 26.Jeng, Y. N. and Y. C. Cheng. 2004. A Simple Strategy to Evaluate the Frequency Spectrum of a Time Series Data with Non-Uniform Intervals. 10-th National Computational Fluid Dynamics Conference of Taiwan, Hua-Lien A(9). 27.Jeng, Y. N., P. G. Huang and H. Chen. 2004. Wave Decomposition in Physical Space Using Iterative Moving Least Squares Methods. Proceedings of 11-th National Computational Fluid Dynamics Conference, Tai-Tung, Paper NO. CFD 11-0107. 28.Jeng, Y. N. and Y. C. Cheng. 2006. A time-series data analyzing system using a new time-frequency transform. Proc. 2006International Conference on Innovative computing, Information and Control1 0190:525-528. 29.Jeng, Y. N. 2006. Time-frequency plot of a low speed turbulent flow via a new time frequency transformation.Proc. 16th Combustion Conf. (9001), Taiwan, April. 30.Kerola, J. 1996. Non-invasive blood pressure data acquisition employing pulse transit time detection. Engineering in Medicine and Biology Society. 31.Kuo, Y. C., T. Y. Chiu, M. Y. Jan, J. G. Bau, S. P. Li, W. K. Wang and Y. Y. Wang. Oct. 2004. Losing harmonic stability of arterial pulse in terminally Ill patients, Clinical Methods and Pharmachology. Blood Pressure Monitoring 9 (5): 255-258. 32.Lin, Albert Chin-yuh. 1998. The Development of Sensing System for Chinese Medical Pulse Diagnosis. 中醫藥年報16(1):685-732. 33.Losstus, K., M. Eriksen and L. Walloe. 1993. Fluctuations in blood flow to acral skin in humans: connection with heart rate and blood pressure variability. Journal of Physiology 460:641-655. 34.Mitra, S. K. 2001. Digital signal processing. Singapore: McGraw-Hill. 35.Malcolm. Thaler, M. D. 1997. 心電圖學必備。台北和記圖書出版。 36.Nitzan, M., A. Babchenko and B. Khanokh. 1999. Very low frequency variability in arterial blood pressure and blood volume pulse. Medical & Biological Engineering & Computing 37:54-58. 37.Rao, R. M. and A. S. Bopardikar. 1998. Wavelet transforms. Addsion Wesley Longman Inc. 38.Shene, G. C. 1998. Study of Brochial Asthma by the Pulse Spectrum Analysis. 中醫藥年報16(1):803-808. 39.Shsterman, V., K. P. Anderson and O. Barnea. 1997. Spontaneous skin temperature oscillations in normail human subjects. American Physiological Society273:1173-1181. 40.Vander, A. 1998. Human physiology. WCB Mcgraw-Hill. 41.Wang, W. K., Y. Y. Lo, Y. Chiang, T. L. Hsu and Y. Y. Wang. 1990. Resonance of organs with the heart.In biomedical Engineering-An International Symposium, ed. Young, W. J. Hemisphere,Washington, DC. USA :259-268. 42.Wang, W. K. 1998. A study of the principle of meridian in Chinese medicine by pulse feeling method. 中醫藥年報16(1):149-176. 43.Wang, Y., Y. Lin, M. Y. Jan, C. S. Shyu, C. A. Jiang, and W. K. Wang. Jan.2004. The natural fre-quencies of the arterial system and their relation to the heart rate. IEEE Trans. Biomed. Eng 51(1): 193-195.
摘要: 本研究採用高靈敏度壓電感測元件,發展敏銳的脈搏感測儀器,量測人體手腕脈搏波形,計算其中所包含之參數來探討與研究人體生理狀況相關性的適用性;藉由分析脈搏頻譜成份並使用Buttorworth濾波器過濾高頻雜訊,再使用Hermite方程式去除手腕低頻振動雜訊,由過濾後的脈搏訊號萃取振幅強度、波形上升與下降時間、上升與下降角度等參數,經由統計分析探討與人體生理之情況相關性,並將所獲得指標結果與市售儀器所量測之數據變化進行比較。 人體生理變化是以飯前與飯後不同時間的脈搏為比較依據。研究統計結果顯示脈搏之強度常數HP、HT、HD可用來判定飯前與飯後的生理變化,其實驗中分辨飯前與飯後生理狀況成功率達91.6%,且無論男女皆有很高的穩定度,可用來配合所研製之儀器作為發展生理指標的潛力。時間參數UPT1、UPT2、UPT3無法關聯到生理之變化,PPT1、PPT2、PPT3三參數在飯後不同時間的生理狀況比較下,在試驗者中其成功分辨率可達到68.8%,能有效分辨不同時間點的生理情況,且不論男女皆有很高的穩定度。參數P角亦可用來判定生理狀況,但是參數U角則不行。
This research uses high sensitive piezoelectric sensor for developing a sensitive sphygmograph to detect anthropic pulse and to determine parameters to diagnose physiology of human. From spectrum of pulse, the analysis processes are to determine the high pass frequency used in the analysis, uses the IIR Buttorworth filter to remove the noise, to calculate the Hermite curve for filtering the oscillation parts caused by breathe, then to calculate the parameters in strength, time and angle domains from the processed signal to study their correlation with the physiology of the studied experimenters and compared the results with the machine from the market. The reference for the comparision in this experiment is divided into two groups of anthropic pulse before and after lunch. The parameters HP、HT、HD from the strength domain of the signal showed their potential to distinguish the physiology difference of the two groups with the correct ratio up to 91.6% and no correlation with the testers’ gender. The parameters from the time domain of the pulse have two categories, the first category parameters of UPT1, UPT2 and UPT3 can’t separate the physiology difference between before and after the meals, but the second category PPT1, PPT2 and PPT3 can distinguish the situation between before and after meals in time 30 mins, 60 mins and 90mins, and the correct ratios up to 68.8% in all cases and no correlation with the testers’ gender. The parameters of angel P also can recognize the physiology difference, but the parameter of angle U can’t.
URI: http://hdl.handle.net/11455/35530
其他識別: U0005-2111200813280900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2111200813280900
Appears in Collections:生物產業機電工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.