Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35544
標題: 蒜球分級機之設計研究
Development and Study of a Garlic Bulb Sorting Machine
作者: 郭景成
Kuo, Ching-Cheng
關鍵字: Garlic bulbs
蒜球
Grading
Image processing
分級
影像處理
出版社: 生物產業機電工程學系所
引用: 1.行政院農業委員會。2006。95年農業統計年報。pp.50,pp.155。行政院農業委員會。台北市。 2.李芳繁。1990。以影像處理量測檸檬之幾何性質。農業工程學報36(3):36-42。 3.李文汕。2005。台灣農家要覽農作物篇(二)。增修訂三版,pp.335-344。行政院農業委員會。台北市。 4.何銘倫。1999。大蒜乾燥特性與模式之研究。國立中興大學農業機械工程學研究所碩士論文。台中。 5.林聖泉、藍光宏。1996。機器視覺於蕃茄大小選別作業之應用。農林學報45(4):111-123。 6.林昭雄。1995。台灣農家要覽農作物篇(二)。增修訂再版,pp.291-296。財團法人豐年社。台北市。 7.施清田、鄭榮瑞。1999。南改型蒜頭剝瓣選別分級機。台南區農業改良場技術專刊。 8.徐武煥、邱澄文。2001。高效率文旦分級機。花蓮區農業專訊36:21-24。 9.張文宏、陳世銘。1993。以機器視覺引導機器人選別水果。農業機械學刊2(3):11-24。 10.張向勻、歐陽丞修、江昭皚、林達德、桂佳鳳、楊曼妙、楊恩誠。2005。水果X光影像蟲害偵測之研究。農機與生機論文發表會。pp.251-252。中華農業機械學會。屏東。 11.黃正霖、李芳繁、林慶福。1994。應用彩色機器視覺計數選別蔬菜種子之研究。農業機械學刊3(4):1-14。 12.黃裕益、盧世祥、游景昌。2000。印度棗分級物性指標建立之研究。農林學報49(4):47-62。 13.游景昌。1997。重量式印度棗分級機之開發。高雄區農業專訊19:10-12。 14.經濟部標準檢驗局。2007。中華民國國家標準(CNS)。經濟部標準檢驗局。台北市。 15.萬一怒、廖家興。1996。糙米外觀品質影像特徵之研究。農業機械學刊5(2):49-63。 16.華海清、宋起、李益生。2003。現代養生保健中藥辭典。初版,pp.30-34。薪傳出版社。台北市。 17.陳俊明。1982。椪柑分級機械之研製。中國農業工程學報28(3):65-78。 18.陳秀文。2005。高改型重量式鳳梨分級機。高雄區農技報導第65期。 19.陳秀文。2006。高改型重量式洋蔥分級機簡介。台灣農業機械21(5):8-10。 20.賴滋漢、賴業超。1994。食品科技辭典。增訂版,pp.618。富林出版社。台中市。 21.賴滋漢、柯文慶。1996。食品材料科學農產篇。初版,pp.184-185富林出版社。台中市。 22.謝江漢、鍾克修。1992。園產處理與加工。初版,pp.52-55。地景企業股份有限公司出版部。台北市。 23.謝青霖、馮丁樹、陳世銘。1992。數位影像在蔬果大小選別之應用。農業機械學刊1(1)28-41。 24.行政院農業委員會農糧署作物生產組(2006年8月23日)。96年大蒜產銷輔導措施。行政院農業委員會農糧署。線上檢索日期:2007年8月11日。網址:http://www.afa.gov.tw/agriculture_news_look.asp?NewsID=525。 25.行政院農業委員會農業試驗所(1998年9月10日)。吉利牌南改型蒜頭剝瓣選別分級機性能測定報告No.180。行政院農業委員會農業試驗所。線上檢索日期:2007年8月11日。網址:http://www.tari.gov.tw/taric/modules/wfdownloads/visit.php?cid=5&lid=337。 26.行政院農業委員會農業試驗所(2006年12月26日)。豐洲牌FK-22L型蔬果清洗分級一貫處理機No.281。行政院農業委員會農業試驗所。線上檢索日期:2007年8月11日。網址: http://www.tari.gov.tw/taric/modules/wfdownloads/visit.php?cid=5&lid=4417。 27.Akar, R. and C. Aydin. 2005. Some physical properties of Gumbo fruit varieties. Journal of Food Engineering 66(3): 387-393. 28.American Society of Agricultural Engineers. 1981. Agricultural engineers yearbook 1981-1982. American Society of Agricultural Engineers. Michigan. 29.Association of Official Analytical Chemists. 1990. Official methods of analysis. 13 edition. Association of Official Analytical Chemists. Washington, D. C. 30.Aydine, Cevat. and M. Musa Őzcan. 2007. Determination of nutritional and physical properties of myrtle (Myrtus Communis L.) fruit growing wild in Turkey. Journal of Food Engineering 79(2): 453-458. 31.Bennedsen, B. S., D. L. Peterson and Amy Tabb. 2005. Identifying defects in images of rotating apples. Computers and Electronics in Agriculture 48 (2):92-102. 32.Curray, J.K. 1951. Analysis of sphericity and roundness of quartz grains. M. S. Thesis in Minerology. The Phennsylvania State University, University Park. PA, USA. 33.Chen, P., M. J. McCarthy and R. Kauten. 1989. NMR for internal quality evaluation of fruits and vegetables. Transactions of ASAE 32(5): 1747-1753. 34.Dehspande, S. D., S. Bal and T.P. Ojha. 1993. Physical properties of soybean. Journal of Agricultural Engineering Research 56(2):89-98. 35.Khoshnam, F., A. Tabatabaeefar., M. Ghasemi Varnamkhasti and A. Borghei. 2007. Mass modeling of pomegranate (Punica granatum L.) fruit with some physical characteristics. Scientia Horticulturae 114(1):21-26. 36.Mohsenin, N. N. 1986. Physical properties of plant and animal Materials. 2nd ed., pp84-86. New York:Gordon and Breach, Science Publishers,Inc. 37.National Instruments. 2003. IMAQ Vision Concepts Manual. 38.Rosenfeld, A. and A. C. Kak. 1982. Digital Picture Processing. 2nd ed. New York:Acdemic Press Inc. 39.Gonzalez Rafael C. and Paul Wintz. 1987. Digital Image Processing. New York:Addison-Wesley Publishing Company. 40.Sarker, N. and R. R. Wolfe. 1985. Feature extraction techniques for sorting tomatoes by computer vision. Transactions of the ASAE 28(3):970-974, 979.
摘要: At present, the traditional grading method of the post-harvest garlic bulbs used manpower with eye vision that was time consumption and subjective. The purpose of this research aimed on the development of a garlic bulbs sorting system to replace the traditional grading method. The goal of the system was to achieve the fast and accurate grading operation so as to reduce the post-harvest cost, increase the garlic bulbs purchasing price, raise the farmers income, and help the following wholesaler purchase and storage. This research first applied the image processing technique to investigate the basic physical characteristics of the garlic bulbs. The results studied showed that the shape size and weight of the garlic bulbs held with high correlation. Therefore, a shape sorting mechanism was designed which utilized the change of different spacing sections of two hairbrush shafts by adjusting their relative positions as operation under the same rotation speed and direction. The system developed for the garlic bulbs grading was combined together with the parts of the automatic supplying unit, the peel and molt removing equipment, and the shape sorting mechanism. Based on the testing results of this newly developed sorting system with various stem length of the garlic bulbs and various rotation speed of the hairbrush shafts, the accuracy of grading obtained was between 79.3% and 90.1%. The condition of the case with the maximum accuracy (90.1%) was with the stem length 3 cm and rotation speed 86 rpm. Under the allowable tolerance errors 5~10% described in the Chinese National Standards(CNS), the average grading accuracy then obtained of the whole testing cases could be raised up to 98.7%. The processing capacity of the system was reached up to about 576 kg per hour which was 2.2 and 1.4 times, respectively as compared to the system obtained with the single-rail and double-rail weight sorting mechanism. Moreover, the newly developed shape sorting system also held the lower construction expenditure and operation cost than the single-rail and double-rail weight sorting machine. It could save tremendous labor power and processing cost as required in the grading operation of the garlic bulbs.
目前坊間蒜球分級多使用人工以目視方式來進行分級作業,此分級方式耗力費時且不夠客觀,故本研究旨在研製一套蒜球分級系統,期能取代人工分級,快速且準確地完成分級作業,降低收穫後處理成本、提高蒜球收購價格與增加蒜農收益,以利後續農事單位收購與儲藏。 本研究先行以影像處理等方式來進行蒜球基礎物性調查,結果顯示蒜球外形與重量具有高度相關性,故設計一套以外形為選別機制之分級機,階級式蒜球分級機所採用之分級原理,為利用改變階級毛刷間相對應位置,即分級間隙來達到分級的目的。而蒜球分級系統係由自動供料機構、去皮脫膜機構與階級式蒜球分級機等所組成。 利用不同蒜球莖長與分級轉速試驗得知,分級準確率分佈在79.3~90.1%,而以蒜球莖長3公分,分級轉速86rpm時,分級準確率最高為90.1%,而在中華民國國家標準(CNS)所給予容許5~10%誤差範圍時,其平均分級準確率可達98.7%,分級作業量每小時約576公斤,較單排側放式與雙排下放式重量分級機分別高 2.2與1.4倍;且階級式蒜球分級機售價與分級作業成本,亦低於單排與雙排式重量分級機,故使用階級式蒜球分級機可節省相當之人力與成本。
URI: http://hdl.handle.net/11455/35544
其他識別: U0005-2408200816462000
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2408200816462000
Appears in Collections:生物產業機電工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.