Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35554
標題: 稻草生物製漿反應器設計與探討
Design and Investigation of a Bio-pulping Reactor of Rice Straw
作者: 蘇卓群
Su, Juo-Chiun
關鍵字: Rice straw
稻草
Bio-pulping
Reactor
生物製漿
反應器
出版社: 生物產業機電工程學系所
引用: 參考文獻 1.王錫元、張春林、王虹。2006。洗漿機理與其工藝設備研究的新進展。輕工機械 24(1): 9-12。 2.王佳玲、余惠生、付時雨、黃秀瑜。1998。白腐菌漆酶的研究進展。微生物學通報 25(4): 233-236。 3.林蘭東。2003。紙漿與木材聚戊醣分析方法之研究。臺大實驗林研究報告 17(2): 107-123。 4.林財得、謝清祿、謝欽城。2004。不同前處理對稻稈吸水性之影響及以稻稈與禽畜糞製作堆肥可行性探討。農業機械學刊 13(4): 1-11。 5.行政院農委會農糧署。2006。民國94年台灣地區稻米生產量報告 1(3): 1-6。 6.李超運。1997。稻田收穫後稻草掩埋好處多。花蓮區農業改良場農技報導 33: 1-3。 7.伍沅。1998。氣升式反應器及其在生物技術中的應用。浙江化工 29: 36-46。 8.武啟瑞。1994。稻草暨其他非木植物製漿,第四版,pp. 95-135。武恕出版社。台北。 9.金永燦。2002。工業木質素的開發利用。林業科技開發 16(3): 9-10。 10.侯旭、萬昌秀、劉子佳、黃華。2005。組織工程生物反應器的力學環境特點。醫用生物力學 20(4): 260-264。 11.洪文卿、李茂田、林榮和。2004。推動稻草非露天燃燒處理改善空氣品質研究。第五屆環境管理研討會論文集,pp. 114-122。嘉義。 12.柯文慶、賴滋漢。2001。生物反應器在食品加工上之應用,初版,pp. 1-5。中華民國農業職業教育學會。台北。 13.高清。1984。林木生理學實驗法,初版,pp. 54-67。千華出版公司。台北。 14.秦夢華、高培基。1998。製漿造紙工業中的生物技術。中華紙業:科技論文與綜述 2: 6-9。 15.倪禮豐。2003。水稻廢棄資材之利用。花蓮區農業專訊43: 21-24。 16.陶泰來譯。1985。製漿造紙技術手冊,Gary A. Smook原著,初版,pp. 37-203 。食貨出版社。台北。 17.張正賢譯。1988。稻作學精要,Yoshida Shouichi原著,初版, pp. 1-77,pp. 141-265。國立編譯館。台北。 18.張彩泉。1999。台灣稻作發展史,初版,pp. 1-9。台灣省政府農林廳。南投。 19.莊萬發譯。1996。化工反應裝置 選定、設計、實例。橋本健治原著,第二版,pp. 1-29,pp. 211-268。復漢出版社。台南。 20.陳一心。1989。氮肥、有機肥料及矽酸爐渣對稻米品質及產量之影響。中華農業研究 38(2): 167-178。 21.陳文恆、郭家倫、黃文松、王嘉寶。2007。纖維酒精技術之發展。農業生技產業季刊 9:62-69。 22.陳洪章、李佐虎。2002。微生物固態發酵反應器。化工科技市場 2:25-27。 23.陳啟吉、劉達修。1994。水稻莖稈特性與其對螟蟲之感受性關係研究。台中區農業改良場研究彙報 43:1-6。 24.陳長春、劉健、方建敏、陸冰玉。1997。電滲析法處理造紙黑液回收堿的試驗研究。環境污染與防治 19(2): 7-10。 25.陳清環。2003。應用固定化白腐菌處理硫酸鹽紙漿漂白廢水之研究。國立台灣大學森林學研究所碩士論文。台北。 26.許正宏、孫微、史勁松、陶文沂。1998。製漿生物技術的研究與工業應用。林產化學與工業 18(3): 89-94。 27.黃世佑。1983。生物反應器-設計與操作。生物技術專題演講論文集。國科會生物科學研究中心專刊 11: 153-168。 28.黃宗煌、蘇聰敏。1995。開放經濟體系下之廢紙回收的最適環境政策。農業經濟叢刊 1(1): 117-154。 29.黃恩才、劉國標。1996。化學反應工程,初版,pp. 1-12, pp. 145-167。化學工業出版社。北京。 30.黃豔、趙德修、呂東平、顏芳、李佐虎、陳洪章、趙喬。2001。攪拌式生物反應器懸浮培養水母雪蓮細胞研究。生物工程學報 17(5): 561-565。 31.曾潤翔。1972。植物生理學(上冊),初版,pp. 9-11。環球書社。台北。 32.楊崎峰、詹懷宇、王雙飛、李可成、付時雨。2007。桉木化學-熱磨機械漿纖維的生物改性研究。現代化工 27(1): 32-37。 33.廖玉琬、徐善德、林美華、謝永祥、吳弘達、鍾仁彬譯。1999。植物生理學,William G. Hopkins原著,初版,pp. 1-64。啟英文化。台北。 34.經濟部工業局。2002。造紙廠操作維護最佳化案例探討。產業綠色技術輔導與推廣計畫。台北。 35.趙林果、金耀光、李強、徐柏生。2007。白腐菌與黑曲黴所產的纖維素複合酶對稻草秸稈的生物降解。中國生物工程雜誌 27(3): 71-75。 36.歐仕益、高孔榮。1997。膳食纖維研究進展。糧食與飼料工業 2: 39-40。 37.盧守耕。1958。稻作學,初版,pp. 33-69。正中書局。台北。 38.蔣應梯。2005。纖維素廢料與造紙黑液木質素製人造木材之探討。林業化學與工業 25(5): 165-167。 39.謝波、韋朝海、吳超飛、肖宏亮、譚盈科。1999。微縮型導流筒氣升式內環流生物反應器流體力學與傳遞性質。高校化學工程學報 13(2): 121-128。 40.蘇東海、孫君社、張東、石堅、劉萍。2005。生物反應器操作參數對秸稈固態發酵酒精的影響。中國釀造 146(5) :18-20。 41.蘇裕昌。2000。微生物降解木片之製漿評估。台灣林業科學 15 (2) : 257-265。 42.Bajpai, Pratima, Shree Prakash Mishra, Om Prakash Mishra, Sanjay Kumar and Pramod K. Bajpai. 2004. Biochemical Pulping of Bagasse. Biotechnology Progress 20(4): 1270-1272. 43.Bauer, W.D., K.W. Talmadge, K. Keegstra and P. Albersheim. 1972. The Structure of Plant Cell Walls II. The Hemicellulose of the Walls of Suspension-cultured Sycamore Cells. Plant Physiology 51(1): 174-187. 44.Berg, Linda R.. 1997. Introductory Botany: Plants, People and the Environment, Second Edition, pp. 44-63, pp. 128-149. Thomson Corporation. Belmont, CA., U.S.A. 45.Buchert, J., J. Bergnor, G. Lindblad, L. Viikari and M. Ek. 1997. Significance of Xylan and Glucomannan in the Brightness Reversion of Kraft Pulps. TAPPI Journal 80 (6): 165-171. 46.Cao, B., U. Tschirner, S. Ramaswamy and A. Webb. 1997. A Rapid Modified Gas Chromatographic Method for Carbohydrate Analysis of Wood Pulps. TAPPI Journal 80(9): 193-197. 47.Chen, R., I.C. Wang and Y.C. Ku. 1997. Chemi-Mechanical Pulping of Rice Straw (I) Liquid-Phase Cooking. Taiwan Journal of Forest Science 12(3): 235-244. 48.Cosgrove, Daniel J.. 1999. Enzymes and Other Agents that Enhance Cell Wall Extensibility. Annual Review of Plant Physiology and Plant Molecular Biology 50: 391–417. 49.Cummins, K.A.. 1992. Effect of Dietary Acid Detergent Fiber on Responses to High Environmental Temperature. Journal of Dairy Science 75(6): 1465-1471. 50.Datnoff, L.E., C.W. Deren and G.H. Snyder. 1997. Silicon Fertilization for Disease Management of Rice in Florida. Crop Protection 16(6): 525-531. 51.Deniz, lhan, Hüseyin Kırcı and Saim Ates. 2004. Optimisation of Wheat Straw Triticum Drum Kraft Pulping. Industrial Crops and Products 19(3): 237-243. 52.Dorado, José, Gonzalo Almendros, Susana Camarero, Angel T. Martínez, Tamara Vares and Annele Hatakka. 1999. Transformation of Wheat Straw in the Course of Solid-State Fermentation by Four Ligninolytic Basidiomycetes. Enzyme and Microbial Technology 25(7): 605-612. 53.Durand, A.. 2003. Bioreactor Designs for Solid State Fermentation. Biochemical Engineering Journal 13: 113–125. 54.Eggert, Claudia, Ulrike Temp and Karl-Erik L. Eriksson. 1996. The Ligninolytic System of the White Rot Fungus Pycnoporus Cinnabarinus: Purification and Characterization of the Laccase. Applied and Environmental Microbiology 62(4): 1151–1158. 55.Hatakka, Annele. 2006. Lignin-Modifying Enzymes from Selected White-Rot Fungi: Production and Role from in Lignin Degradation. FEMS Microbiology Reviews 13 (2): 125-135. 56.Ho, Chung-Han, Kelley A. Henderson and Gregory L. Rorrer. 1995. Cell Damage and Oxygen Mass Transfer during Cultivation of Nicotiana Tabacum in a Stirred-Tank Bioreactor. Biotechnology Progress 11: 140-145. 57.Kirk, T. Kent and Roberta L. Farrell. 1987. Enzymatic “Combustion”: The Microbial Degradation of Lignin. Annual Review of Microbiology 41:465–505. 58.Laukevics, J.J., A.F. Apsite, U.S. Viesturs and R.P. Tengerdy. 1985. Steric Hindrance of Growth of Filamentous Fungi in Solid Substrate Fermentation of Wheat Straw. Biotechnology and bioengineering 27(12): 1687-1691. 59.Meinert, Maureen C. and Deborah P. Delmer. 1977. Changes in Biochemical Composition of the Cell Wall of the Cotton Fiber During Development. Plant Physiology 59: 1088-1097. 60.Merchuk, J.C. and M.H. Siegel. 1988. Air-Lift Reactors in Chemical and Biological Technology. Journal of Chemical Technology and Biotechnology 41(2): 105-120. 61.Nagel, F.J., J. Tramper, M. Bakker and A. Rinzema. 2001. Temperature Control in a Continuously Mixed Bioreactor for Solid-State Fermentation. Biotechnology Bioengineering 72 (9): 219–230. 62.Pan, Mingzhu, Hailan Lian and Dingguo Zhou. 2007. Chemical Characteristics of Straw Fiber and Properties of Straw Fiberboard with Different Pretreatments. Frontiers of Forestry in China 2(2): 237-240. 63.Pandey, Ashok. 1997. Solid State Fermentation. Chemical Engineering Journal 66: 83. 64.Pepper, J. M., C. J. Brounstein and D. A. Shearer. 1951. Studies on Lignin by Means of Catalytic Hydrogenation of Aspen Wood and Wheat Straw. American Chemical Society 73 (7): 3316 – 3319. 65.Piao, Cheng, Todd F. Shupe, Chung Y. Hse and Jamie Tang. 2004. Bio-Composites Mode From Pine Straw, 7th Pacific Rim Bio-Based Composites Symposium 1, pp. 291-292, Nanjing. China. 66.Ramos, Juan, Teresa Rojas, Fernando Navarro, Florentina Dávalos, Rubén Sanjuán, José Rutiaga and Raymond A. Young. 2004. Enzymatic and Fungal Treatments on Sugarcane Bagasse for the Production of Mechanical Pulps. Journal of Agricultural and Food Chemistry 52(16): 5057 -5062. 67.Reid, J. David, G. H. Nelson and S. I. Aronovsky. 1940. Determination of Cellulose in Fibrous Agricultural Wastes, A Rapid Method Using Monoethanolamine. Industrial and Engineering Chemistry Analytical Edition 12(5): 255–259. 68.Saha, Badal C.. 2003. Hemicellulose bioconversion. Journal of Industrial Microbiology and Biotechnology 30(5): 279–291. 69.Shen, H. Sh., D.B. Ni and F. Sundstøl. 1997. Studies on Untreated and Urea-Treated Rice Straw from Three Cultivation Seasons: 1. Physical and Chemical Measurements in Straw and Straw Fractions. Animal Feed Science and Technology 73(3) : 243-261. 70.Sherritt, Richard G., Jamal Chaouki, Anil K. Mehrotra and Leo A. Behie. 2003. Axial dispersion in the three- dimensional mixing of particles in a rotating drum reactor. Chemical Engineering Science 58(2): 401-415. 71.Stern, Kingsliey R.. 1979. Introductory Plant Biology, Sixth edition, pp. 67-89. Wm. C. Brown Publishers, CA., U.S.A. 72.Tengerdy, R.P. and G. Szakacs. 2003. Bioconversion of Lignocellulose in Solid Substrate Fermentation. Bio-chemical Engineering Journal 13 :169–179. 73.Van Soest, P.J., J.B. Robertson and B.A. Lewis. 1991. Methods for Dietary Fiber, Neutral Detergent Fiber, and Non-Starch Polysaccharides in Relation to Animal Nutrition. Journal of Dairy Science 74(10): 3583-3597. 74.Webber, H.A.. 1929. Cellulose from Cornstalks. Industrial and Engineering Chemistry 21(3): 270–275. 75.Wilson, J.R. and R.D. Hatfield. 1997. Structural and Chemical Changes of Cell Wall Types During Stem Development: Consequences for Fibre Degradation by Rumen Microflora. Australian Journal of Agricultural Research 48: 165-180. 76.Yu, Hong, Menghua Qin, Xuemei Lu, Yinbo Qu and Peiji Gao. 2004. Biopulping of Wheat Straw with Phanerochaete Chrysosporium. Journal of TianJin University of Science and Technology 19: 305-309.
摘要: Abstract The purpose of this study is to design and investigate a bio-pulping reactor for rice straw using Bacillus sp. PMB-021, which was provided by the Disease Management Research Center of the Plant Pathology Department of the National Chung Hsing University, in an attempt to solve the problem of agricultrual wastes and to provide a new source of material of fiber for industries such as pulping and reproductive energy. At first, established the standard for measuring the bio-pulping efficiency of rice straw, including a 24-hour drying time and the repulping time is 60 seconds, and also obtained the moisture content (dry basis) of the rice straw was 8.91%, which harvested from the agriculture experimental station of NCHU. Based on the preliminary studies on bio-pulping of rice straws by Bacillus sp. PMB-021 at 30, 35 40, 45, 50, 55 and 60℃, there was no significant difference in basic bio-pulping efficiencies without shaking, while in shaking condition Bacillus sp. PMB-021 showed the optimal efficiency at 45℃ with the recovery of 61.45%. Our results thus suggest that Bacillus sp. PMB-021 requires a shaking condition to obtain a batter efficiency of bio-pulping for rice straw. The bio-pulping reactor in this study was composed of a tank, a stirring apparatus, a power controlling system, a temperature controlling system and other auxiliary devices. The agitation of this reactor adopted the compressing of reciprocating motion. The reciprocating motion angle experiments suggest that the reactor shows disproportionate mixing in 90° reciprocating motion by the over-stirring of rice straw, while 45° proved to be a better stirring angle of bio-pulping reactor with the recovery of 64.70% and the rice straws displayed proportionate mixing and was completely submerged in the reagent. Comparing the results of the experiments with or without Bacillus sp. PMB-021 under 45° reciprocating motion angle process demonstrates that the bio-pulping reactor in this study is able to degrade rice straws efficiently, and that Bacillus sp. PMB-021 could function in the bio-pulping reactor of this study. The no-stirring experiment of the bio-pulping reactor displayed the natural microorganisms inside rice straws also have the ability of bio-pulping, the potential of which needs to be further investigated in the future. Intermittent bio-pulping process studies demonstrate that the Bacillus sp. PMB-021 would be hindered from the process without continued stirring. The reaction time of the bio-pulping process should be controlled less than 2 days to prevent hemicellulose lost. The efficiency of bio-pulping can be increased by improving the stirring apparatus and pretreat the rice straw.
摘要 本研究旨在利用國立中興大學植物病理學系病害管理研究室提供之Bacillus sp. PMB-021進行稻草生物製漿反應器之開發與探討,以解決稻草廢棄物處理之問題,亦由此方式提供製漿或生殖能源等工業一種新的纖維原料來源。首先本研究確立稻草分解效率判定方式,其包括稻草纖維回收率測定時所需要的乾燥時間為24小時,而散漿時間則以60秒為佳,並獲致本研究所使用之中興大學北溝農場之風乾梗稻,其乾基含水率為8.91%。 依據Bacillus sp. PMB-021進行稻草生物製漿基礎試驗,於30、35、40、45、50、55與60℃之七種不同溫階測試結果,已獲致靜置反應時,菌種添加與否並無顯著效果,然於震盪反應條件下,上述七種溫階則獲致45℃為Bacillus sp. PMB-021之較佳反應溫度,其反應回收率為61.45%,並亦獲致Bacillus sp. PMB-021於擾動情況下,能有效提高解離稻草纖維之效果。 本研究開發之稻草生物製漿反應器,系統包括反應槽體與攪拌機構、動力與控制系統、溫度控制系統以及其他輔助裝置,其擾動主要採取往復轉動之擠壓方式,在轉動角度之測試結果,獲致於轉動角度90°運轉時會造成稻草過度擠壓,導致攪拌不均之情況;當於轉動角度45°時,則可獲致較佳之反應現象,稻草可完全浸於反應溶液並達到均勻之攪拌效果,而其反應回收率為64.70%;運轉角度45°試驗組與無菌對照組反應試驗結果相互比較,亦獲致Bacillus sp. PMB-021能有效於反應器內進行纖維解離。反應器無攪動對照組試驗中亦發現,稻草本身所內含之雜菌亦具有解離纖維之能力,有關其是否具備生物製漿之潛力則需進一步探討。而間歇運轉試驗結果則顯示若無持續擾動,將影響Bacillus sp. PMB-021進行稻草生物製漿之能力;且未來有關稻草生物製漿之反應時間應以兩天以內為佳,以考量保留更多之半纖維素成分,然而未來仍須解決攪拌機構容易造成攪拌不均之問題,或是透過適當之稻草前處理,來增進稻草生物製漿之效率。
URI: http://hdl.handle.net/11455/35554
其他識別: U0005-2508200810580500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508200810580500
Appears in Collections:生物產業機電工程學系

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.