Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3556
標題: 合成4-胺基苯甲酸丁酯之相間轉移催化酯化及其水解反應研究
Phase-Transfer Catalyzed Esterification for Synthesizing 4-Aminobenzoic Butyl Ester and Its Hydrolysis Reaction
作者: 顏誌廷
Yen, Chih-Ting
關鍵字: Phase-transfer catalysis, liquid-liquid phase, interfacial tensions, The esterification, 4-aminobenzoic butyl ester
相間轉移觸媒催化反應,液-液相,界面張力,酯化反應,4-胺基苯甲酸丁酯,4-胺基苯甲酸化甲基三辛基銨
出版社: 化學工程學系所
引用: 1. Jarrouse, J., “The influence of Quaternary Chloride on the Reaction of Labike Hydrogen Compound and Chlorine-Substituted Chlorine Derivatives,’’ C.R Heabd.Seances Acad.Sci, C232,1424(1951) 2. Starks, C.M., “Phase Transfer Catalysis. I. Heterogeneous Reactions Involving Anion Transfer by Quaternary Ammonium and Phosphonium Salts,” J. Am. Chem. Soc., Vol. 93, No. 1, PP. 195-199 (1971) 3. Starks, C.M. and Owens, R.M., “Phase Transfer Catalysis.Kinetic Details of Cyanide Displacement on 1-Halooctanes,’’ J. Am. chem. Soc., Vol. 95, No. 11, PP. 3613 (1973) 4. Wang, D.H.and H.S. Weng, “Preliminary study on the role played by the third liquid phase in phase transfer catalysis,’’ Chem. Eng. Sci., Vol. 43. , PP. 2019-2024 (1988) 5. Herriott, A.W. and D. Picker, “Phase Transfer Catalysis.An Evaluation of Catalysts,” J. Am. Chem. Soc., Vol. 97, No. 9, PP. 2345 (1975) 6.Makosza, M., “Two-phase reaction in Chemistry of carbanions and haloccarbenes. A useful tool in organic synthesis,’’ Pure Appl. Chem., Vol. 43, PP. 439-462 (1975) 7.Makosza, M. and Bialecka, E., “Reactions of organic anions. LXXII.Alkylation of phenyl-acetonnitrile at the interface with aqueous sodium hydroxide,’’ Tetrahedron Letters, Vol. 18, No.2 , PP. 183-186 (1977) 8. Alexander G.. Volkov, “The electrochemical mechanism of photosystem II functioning in chloroplasts,’’ J. Electroanal Chem, Vol. 205, PP. 245-257 (1986) 9. Vladislav S. Markin and Alexander G. Volkov, “Interfacial potentials at the interface between two immiscible electrolyte solutions: Some problems in definitions and interpretation,’’ Journal of Colloid and Interface Science, Vol. 131, No. 2, PP. 382-392 (1989) 10. Leonid I. Boguslavsky, Aleksandr G. Volkov and Mikhail D. Kandelaki, “Transfer of electrons and protons at the decane/water interface in the presence of chlorophyll,’’ FEBS Letters, Vol. 65, No. 2, PP. 155-158 (1976) 11.Yuri I. Kharkats and Alexander G. Volkov, “Interfacial catalysis: Multielectron reactions at the liquid—liquid interface,’’ Journal of Electroanalytical Chemistry, Vol. 184, No. 2, PP. 435-442 (1985) 12. Michael D. Kandelaki and Alexander G. Volkov, “Chlorophyll-water interaction during oxygen photoevolution at the octane-water interface,’’ Biochimica et Biophysica Acta, Vol. 893, No. 2, PP. 170-176 (1987) 13. Vladislav S. Markin and Alexander G. Volkov, “Electrocapillary phenomena at polarizable and reversible interfaces between two immiscible liquids: the generalized electro-capillary equation in hansen''s representation,’’ Electrochimica Acta, Vol. 35, No. 4, PP. 715-724 (1990) 14.Alexander G. Volkov, “Redox reactions at liquid hydrocarbon/water interfaces: biophysical aspects,’’ Electrochimica Acta, Vol. 44, No. 1, PP. 139-153 (1998) 15.Alexander G. Volkov, “Green plants: electrochemical interfaces,’’ Journal of Electroanalytical Chemistry, Vol. 483, No. 1-2, PP. 150-156 (2000) 16.Zdenk SamecYuri I. Kharkats and Yuri Ya. Gurevich, “Stochastic approach to the ion transfer kinetics across the interface between two immiscible electrolyte solutions comparison with the experimental data,’’ Journal of Electroanalytical Chemistry, Vol. 204, No. 1-2, PP. 257-266 (1986) 17. S. Slavtchev, P. Kalitzova-Kurteva and M.A. Mendes, “Marangoni instability of liquid–liquid systems with a surface-active solute,’’ Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 282-283, PP. 37-49 (2006) 18.趙承琛, 界面活性劑化學, 復文書局, 台南市 (1996) 19.趙承琛, 界面化學, 復文書局, 台南市 (1993) 20.刈米孝夫, 王鳳英譯, 界面活性劑的原理與應用, 高力圖書, 台北市 (1993) 21.謝德榮, 有機合成反應, 五南圖書, 台北市, PP. 352-373 (2005) 22.R..Thornton Morrison and R. Neilson Boyd, 楊寶旺譯, 田憲儒譯, 有機化學第三冊, 台灣東華, 台北市 (1986) 23.劉瑞祥, 有機化學, 復文書局, 台南市, PP. 276-280 (2003) 24.Hung-Ming Yang and Cheng-Liang Lin, “phase-transfer catalyzed benzylation of sodium benzoate using Aliquat 336 as catalyst in liquid-liquid system,’’ Journal of Molecular Catalysis A: Chemical, Vol. 206, PP. 67-76 (2003) 25.Wu J. and Ma J., “Synthesis of methyl ethyl ketone peroxide through liquid-liquid phase transfer catalysis,’’Huaxue Shijie, Vol. 42, No. 9, PP. 477-479 (2001) 26. Freedman, H.H. and Dubois, R.A. “An imporoved Williamson Ether Sythesis using Phase Transfer Catalyst,’’ Tetrahedron, Vol. 30, PP. 1379 (1974) 27. Sadatoshi Akabori, Shigeo Miyamoto, Hideo Tanabe, “Allylation of phenoxides by crown ethers and their polymers,’’J. Polym. sci., Vol. 17, PP. 3933-3937 (1979) 28. Wu, H.S and Lai, J.J., “Product Selectivity of Phenoxide Allylation in phase-Transfer Catalyst Reaction System,’’ Journal of The Chin. I. Ch. E., Vol. 26, PP. 277 (1995) 29. Shu-Mei Hung and Jing-Jer Jwo, “Inverse phase transfer catalysis: kinetics of the pyridine 1-oxide-catalyzed two-phase reactions of fluoro- and butyl-benzoyl chlorides and benzoate ions,’’ Journal of Molecular Catalysis A: Chemical, Vol. 154, PP. 55-63 (2000) 30. Battal, T., Siswanto, C. and Rathman, J.F., “Synthesis of Alkylphenyl Ethers in Aqueous Surfactant Solutions by Micellar Phase-Transfer Catalysis. 2. Two-Phase Systems,’’ Langmuir, Vol. 23, No. 23, PP. 6053-6057 (1997) 31. Sunil K. Maity, Narayan C. Pradhan , Anand V. Patwardhan, “Reaction of benzyl chloride with ammonium sulfide under liquid–liquid phase transfer catalysis: Reaction mechanism and kinetics,’’ Journal of Molecular Catalysis A: Chemical, Vol. 250, No. 1-2, PP. 114-121 (2006) 32. Ganapati D. Yadav and Priyal M. Bisht, “Fundamental analysis of microwave irradiated liquid–liquid phase transfer catalysis (MILL-PTC): Simultaneous measurement of rate and exchange equilibrium constants in selective O-alkylation of p-tert-butylphenol with benzyl chloride,’’ Journal of Molecular Catalysis A: Chemical, Vol. 236, No. 1-2, PP. 56-64 (2005) 33. Ganapati D. Yadav and Yogeeta B. Jadhav, “Kinetics and modeling of liquid–liquid phase transfer catalysed synthesis of p-chlorophenyl acetonitrile: role of co-catalyst in intensification of rates and selectivity,’’ Journal of Molecular Catalysis A: Chemical, Vol. 192, No. 1-2, PP. 41-52 (2003) 34. Uchiumi, Shinichiro, Hashimoto, Toshiaki, “Production of amomatic- carboxylic acid ester,’’ Jpn. Kokai Tokkyo Koho (1993)
摘要: 本研究探討的是以液-液相間轉移觸媒催化合成4-胺基苯甲酸丁酯之酯化反應和其水解的研究。在不同的反應條件下例如:觸媒種類、不同攪拌速率、不同有機相反應物量、不同反應溫度效應、不同溶劑效應、界面張力、不同觸媒量等去探討其反應機構並利用觸媒中間體4-胺基苯甲酸化甲基三辛基銨推導出適合的動力式。水解的研究則是以氫氧化鉀的添加量、不同攪拌速率、不同Aliquat 366 的添加量、有機溶劑量等去探討其反應機構並推導出適合此水解反應的動力式。 在本研究中使用親油性的觸媒Aliquat 336的效果最好,在沒有添加觸媒的情況下是沒有反應發生的,一開始觸媒的添加量越多會讓有機相觸媒中間體的生成量越多,但添加過多的觸媒對反應的影響就不大了。提高反應溫度會讓反應性變好使得產率增加,有機溶劑量越少會讓有機相反應物濃度提高讓本質反應加快但接觸面積會減少,而有機溶劑量太多會讓有機相反應物濃度太低使反應性下降,所以有機溶劑量太多太少都有不好的影響。界面張力會隨著觸媒的添加量越多而下降,界面張力越彽反應性會越好,本系統中以觸媒Aliquat 366的效果最好其界面張力也是下降最多的。 在4-胺基苯甲酸丁酯的水解反應中添加越多的氫氧化鉀會讓更多的OH-被觸媒帶到有機相中,因此水解的量會隨著氫氧化鉀的添加量上升而增加。在本系統中水解是需要觸媒才能進行的,因為需要觸媒把氫氧化鉀的負離子帶到有機相中才能進行水解,而觸媒添加越多就可以把越多的OH-帶到有機相中,因此水解量會隨著觸媒的添加量上升而增加。攪拌速率提昇對於水解並沒有影響。有機溶劑量越少會讓有機相中的觸媒及4-胺基苯甲酸丁酯的濃度提昇,對於觸媒攜帶OH-到有機相中及在有機相中進行本質反應都有幫助,因此水解量會隨著有機溶劑量越少而越多。
The present study is to investigate the esterification for synthesizing 4-aminobenzoic butyl ester and its hydrolysis reaction via liquid-liquid phase-transfer catalysis. Different operation conditions such as type of catalysts, different agitation speeds, amounts of organic reactant, reaction temperatures, type of solvents, interfacial tension and amounts of catalyst ,were employed to discuss their effects and to derive the reaction mechanism by phase-transfer catalytic intermediate. For hydrolysis reaction, we discuss the effects of amounts of KOH, different agitation speeds, amount of Aliquat 366, amounts of solvent and so on. The reaction can't happen without adding any catalysts. The intermediate in organic phase will be increased with Aliquat 336 adding to organic phase. More catalysts adding into the organic phase can't make yield of product better. Raising the reaction temperature will increase the reaction activity and let the producing rate be increased. Fewer amounts of organic solvent will let the organic reactant improve true reaction but will reduce the contacting area. Too many solvents will lead to organic reactant concentration lower to make the reaction activity declined. Interfacial tension will decrease by adding too many catalysts. If interfacial tension is low, the reaction activity will be good. Aliquat 336 has a better performance than other catalysts, and the interfacial tension drops much than other catalysts. In hydrolysis of 4-aminobenzoic butyl ester, adding potassium hydroxide will let more OH- taken by catalyst to organic phase, so the quantity hydrolyzed will increase as adding potassium hydroxide. It needs catalysts to hydrolyze in this system. Increasing agitation speed has no effects on hydrolysis. The fewer solvent employed will rise the concentration of catalyst and 4-aminobenzoic butyl ester by increasing the true reaction, the rate of hydrolysis will increase with decreasing solvent .
URI: http://hdl.handle.net/11455/3556
其他識別: U0005-0607200616100900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0607200616100900
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.