Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3559
DC FieldValueLanguage
dc.contributor易逸波zh_TW
dc.contributor張耀南zh_TW
dc.contributor張永吉zh_TW
dc.contributor游銅錫zh_TW
dc.contributor曾耀銘zh_TW
dc.contributor陳齊聖zh_TW
dc.contributor.advisor劉永銓zh_TW
dc.contributor.author張景煇zh_TW
dc.contributor.authorChang, Ching-Huien_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T05:32:08Z-
dc.date.available2014-06-06T05:32:08Z-
dc.identifierU0005-0801200713162100zh_TW
dc.identifier.citation王仕賢、鄭安秀、陳文雄,2000。小果番茄栽培管理。台南區農業改良場技術專刊,96:88-10。 呂鋒洲,2000。番茄與防癌,宏欣文化。台北市,台灣。 吳淳美,1979。食品中之氧化-還原系統及食品抗氧化劑。食品工業,11:42-49。 林天送,1998。生老病死的秘密。健康世界雜誌社,pp. 92-94。 孫朝棟,1990。食品工程學,藝軒圖書出版社,pp. 345-364。 高馥君、李敏雄,1998。食品保存與抗氧化劑。食品工業,30(12):17-24。 陳如茵,1993。台灣蔬菜的儲存,食品工業發展研究所,新竹市,台灣。 陳如茵、吳家駒、蔡美珠、錢明賽,2000。儲藏及熱加工對蕃茄抗氧化性之影響。台灣農業化學與食品科學,38(4):353-360。 陳炳輝,2000。類胡蘿蔔素的特性與應用。科學發展月刊,28(8):599-604。 郭悅雄,1995。自由基、活性氧與抗氧化劑。台灣科學,48(2):164-177。 傅偉光、陳秀瑩、仇志強、陳景川,1997。台灣地區食品營養成分資料庫。行政院衛生署委辦,食品工業發展研究所編印,新竹市,台灣。 劉伯康、陳惠英、顏國欽,1999。數種傳統食用植物甲醇萃取物抗氧化性之研究。中國農業化學會誌,37(1):105-116。 鄭玉磬,1981。淺談食品色素。科學月刊,12(12):19-22。 賴茲漢、金安兒,1990。食品加工學基礎篇。精華出版社。台中市,台灣。 Agarwal, A., Shen, H., Agarwal, S. and Rao, A. V. (2001). Lycopene content of tomato products: its stability, bioavailability and in vivo antioxidant properties. J. Med. Food, 4(1): 9-15. Agarwal, S. and Rao, A. V. (2000). Tomato lycopene and its role in human health and chronic diseases. Canad. Med. Assoc., 163(6): 739-744. Ahuja, K. D., Kunde, D. and Ball, M. J. (2003). Effects of olive oil and tomato lycopene combination on heart disease risk factors. Asia Pac. J. Clin. Nutr., 12: 21-26. AOAC (2000). Official methods of analysis of AOAC international. Gaithersburg, MD, USA. Arias, R., Lee, T. C., Logendra, L. and Janes, H. (2000). Correlation of lycopene measured by HPLC with the L, a, b color readings of a hydroponic tomato and the relationship of maturity with color and lycopene content. J. Agric. Food Chem., 48: 1697-1702. Arts, I. C. W. and Hollman, P. C. H. (1998). Optimization of a quantitative method for the determination of catechins in fruits and legumes. J. Agric. Food Chem., 46: 5156-5162. Aruoma, O. I. (1994). Nutrition and health aspects of free radicals and antioxidants. Food Chem. Toxicol., 32(7): 671-683. Baysal, T., Ersus, S. and Starmans, D. A. (2000). Supercritical CO2 extraction of beta-carotene and lycopene from tomato paste waste. J. Agric. Food Chem., 48: 5507-5511. Bell, G. A. and Mellor, J. D. (1990). Further developments in adsorption freeze-drying. Food Res. Quart., 50(2): 48-53. Bergquist, S. A., Gertsson, U. E., Knuthsen, P. and Olsson, M. E. (2005). Flavonoids in baby Spinach (Spinacia oleracea L.): changes during plant growth and storage. J. Agric. Food Chem., 53: 9459-9464. Bors, W., Heller, W., Michel, C. and Saran, M. (1990). Flavonoids as antioxidants: determination of radical scavenging efficiencies. Methods Enzymol., 186: 343-355. Bovy, A., De Vos, R., Kemper, M., Schijlen, E., Pertejo, M. A., Muir, S., Collins, G., Robinson, S., Verhoeyen, M., Hughes, S., Santos-Buelga, C. and van Tunen, A. (2002). High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell, 14(10): 2509-2526. Brand-Williams, W., Cuvelier, M. E. and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Lebensm.-Wiss.-Technol., 28: 25-30. Brar, R., Maliski, S. L., Kwan, L., Krupski, T. L. and Litwin, M. S. (2005). Changes in quality of life among low-income men treated for prostate cancer. Urology, 66(2): 344-349. Britton, G. (1995). Structure and properties of carotenoids in relation to function. FASEB J., 9: 1551-1558. Burg, P. and Fraile, P. (1995). Vitamin-C destruction during the cooking of a potato dish. Food Sci. Technol. Leb., 28(5): 506-514. Byers, T. and Guerrero, N. (1995). Epidemiologic evidence for vitamin-C and vitamin-E in cancer prevention. Am. J. Clin. Nutr., 62(6): S1385-S1392. Calatayud, A. and Barreno, E. (2001). Chlorophyll a fluorescence, antioxidant enzymes and lipid peroxidation in tomato in response to ozone and benomyl. Environ. Pollut., 115(2): 283-289. Cao, G., Verdon, C. P., Wu, A. H. B., Wang, H. and Prior, R. L. (1995). Automated oxygen radical absorbance capacity assay using the COBAS FARA II. Clin. Chem., 41: 1738-1744. Chism, G. W. and Haard, N. F. (1996). Characteristics of edible plant tissues. In “Food Chemistry”, ed. O. R. Fennema, pp. 943-1011. Chopra, M., Fitzsimons, P. E., Strain, J. J., Thurnham, D. I. and Howard, A. N. (2000). Nonalcoholic red wine extract and quercetin inhibit LDL oxidation without affecting plasma antioxidant vitamin and carotenoid concentrations. Clin. Chem., 46(8): 1162-1170. Choudhary, D. and Kale, R. K. (2002). Antioxidant and non-toxic properties of Piper betle leaf extract: in vitro and in vivo studies. Phytother Res., 16(5): 461-466. Clinton, S. K. (1998). Lycopene: Chemistry, biology, and implications for human health and disease. Nutr. Rev., 56(2): 35-51. Cohen, L. A. (2002). A review of animal model studies of tomato carotenoids, lycopene, and cancer chemoprevention. Exp. Biol. Med., 227(10): 864-868. Crozier, A., Lean, M. E. J., McDonald, M. S. and Black, C. (1997). Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery. J. Agric. Food Chem., 45: 590-595. Davies, J. N. and Winsor, G. W. (1969). Some effects of variety on the composition and quality of tomato fruit. J. Hortic. Sci., 44(2): 331-342. Davis, C. D., Clevidence, B., Swanson, C. A., Ziegler, R. G., Dwyer, J. T. and Milner, J. A. (2005). A research agenda for lycopene/tomato supplementation and cancer prevention. J. Nutr., 135(8): 2074S. Decker, E. A. and Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. J. Agric. Food Chem., 38(3): 674-677. Dewanto, V., Wu, X. Z., Adom, K. K. and Liu, R. H. (2002). Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem., 50(10): 3010-3014. Dzlezak, J. D. (1986). Antioxidants: the ultimate answer to oxidation. Food Technol., 40(9): 94-102. Eberhardt, M. V., Lee, C. Y. and Liu, R. H. (2000). Nutrition - antioxidant activity of fresh apples. Nature, 405(6): 903-904. Elliott, J. G. (1999). Application of antioxidant vitamines in foods and beverages. Food Technol., 53: 46-48. Elmubarak, E., Bromfield, E. and Bovell-Benjamin, A. C. (2005). Focused interviews with Sudanese Americans: perceptions about diet, nutrition, and cancer. Prev. Med., 40(5): 502-509. Esterbauer, H., Striegl, G., Puhl, H. and Rotheneder, M. (1989). Continuous monitoring of in vitro oxidation of human low-density lipoprotein. Free Radical Res., 6: 67-75. Etminan, M., Takkouche, B. and Caamano-Isorna, F. (2004). The role of tomato products and lycopene in the prevention of prostate cancer: a meta-analysis of observational studies. Cancer Epidemiol. Biomarkers Prev., 13(3): 340-345. Flosdorf, E. W. and Hyatt, G. W. (1952). The preservation of bone grafts by freeze-drying. Surgery, 31(5): 716-719. Fogliano, V., Verde, V., Randazzo, G. and Ritieni, A. (1999). A method for measuring antioxidant activity and its application to monitoring the antioxidant capacity of wines. J. Agric. Food Chem., 47: 1035-1040. Gahler, S., Otto, K., and Bohm, V. (2003). Alterations of vitamin C, total phenolics, and antioxidant capacity as affected by processing tomatoes to different products. J. Agric. Food Chem., 51(27): 7962-7968. Gennaro, L., Leonardi, C., Esposito, F., Salucci, M., Maiani, G., Quaglia, G. and Fogliano, F. (2002). Flavonoid and Carbohydrate Contents in Tropea Red Onions: Effects of Homelike Peeling and Storage. J. Agric. Food Chem., 50: 1904-1910. George, B., Kaur, C., Khurdiya, D. S. and Kapoor, H. C. (2004). Antioxidants in tomato (Lycopersium esculentum) as a function of genotype. Food Chem., 84(1): 45-51. Gerster, H. (1997). The potential role of lycopene for human health. J. Am. Coll. Nutr., 16(2): 109-126. Ghiselli, A., Serafini, M., Maiani, G., Azzini, E. and Ferro-Luzzi, A. (1995). A fluorescence-based method for measuring total plasma antioxidant capability. Free Radical Biol. Med., 18: 29-36. Giamperi, L., Fraternale, D., Bucchini, A. and Ricci, D. (2004). Antioxidant activity of Citrus paradisi seeds glyceric extract. Fitoterapia, 75(2): 221-224. Giovannucci, E. (2005). Tomato products, lycopene, and prostate cancer: a review of the epidemiological literature. J. Nutr., 135(8): 2030S-2031S. Graziani, G., Pernice, R., Lanzuise, S., Vitaglione, P., Anese, M. and Fogliano, V. (2004). Effect of peeling and heating on carotenoid content and antioxidant activity of tomato and tomato-virgin olive oil systems. Eur. Food Res. Technol., 52(23): 7005-7010. Grecz, N., Hammer, T. L., Robnett, C. J. and Long, M. D. (1980). Freeze-thaw injury: evidence for double strand breaks in Escherichia coli DNA. Biochem. Biophys. Res. Commun., 93(4): 1110-1113. Gregory, J. F. (1996). Vitamins. In “Food Chemistry”, ed. O. R. Fennema, pp. 531-616. Halliwell, B., Murcia, M. A., Chirico, S. and Aruoma, O. I. (1995). Free radicals and antioxidants in food and in vivo : what they do and how they work. Crit. Rev. Food Sci. Nutr., 35: 7-20. Heber, D., Lu, Q. Y. and Go, V. L. (2001). Role of tomatoes, tomato products and lycopene in cancer prevention. Adv. Exp. Med. Biol. 492: 29-37. Huang, L.-C. (2000). Antioxidant properties and polysaccharide composition analysis of Antrodia camphorata and Agaricus blazei. Master''s thesis of National Chung-Hsing University, Taichung, Taiwan. Jimenez-Escrig, A., Rincon, M., Pulido, R. and Saura-Calixto, F. (2001). Guava fruit (Psidium guajava L.) as a new source of antioxidant dietary fiber. J. Agric. Food Chem., 49(11): 5489-5493. Ju, E. M., Lee, S. E., Hwang, H. J. and Kim, J. H. (2004). Antioxidant and anticancer activity of extract from Betula platyphylla var. japonica. Life Sci., 74(8): 1013-1026. Kawanishi, S. and Inoue, S. (1997). Damage to DNA by reactive oxygen and nitrogen species. Seikagaku, 69(8): 1014-1017. Kerkhofs, N. S., Lister, C. E. and Savage, G. P. (2005). Change in colour and antioxidant content of tomato cultivars following forced-air drying. Plant Foods Hum. Nutr., 60: 117-121. Kitts, D. D. (1997). An evaluation of the multiple effect of the antioxidant vitamines. Trends Food Sci. Technol., 8: 198-203. Klein, B. P. and Perry, A. K. (1982). Ascorbic-acid and vitamin-A activity in selected vegetables from different geographical areas of the United-States. J. Food Sci., 47(3): 941-945. Krinsky, N. I. (1989). Antioxidant functions of carotenoids. Free Radic. Biol. Med., 7(6): 617-635. Kuzniak, E. and Sklodowska, M. (2004). The effect of Botrytis cinerea infection on the antioxidant profile of mitochondria from tomato leaves. J. Exp. Bot., 55(397): 605-612. Lai, L.-S., Chou, S.-T. and Chao, W.-W. (2001). Studies on the antioxidative activities of Hsian-tsao (Mesona procumbens Hemsl) leaf gum. J. Agric. Food Chem., 49(2): 963-968. Lavelli, V., Hippeli, S., Dornisch, K., Peri, C. and Elstner, E. F. (2001). Properties of tomato powders as additives for food fortification and stabilization. J. Agric. Food Chem., 49: 2037-2042. Lavelli, V., Hippeli, S., Peri, C. and Elstner, E. F. (1999). Evaluation of radical scavenging activity of fresh and air-dried tomatoes by three model reactions. J. Agric. Food Chem., 47: 3826-3831. Lavelli, V., Peri, C. and Rizzolo, A. (2000). Antioxidant activity of tomato products as studied by model reactions using xanthine oxidase, myeloperoxidase, and copper-induced lipid peroxidation. J. Agric. Food Chem., 48(5): 1442-1448. Le Gall, G., DuPont, M. S., Mellon, F. A., Davis, A. L., Collins, G. J., Verhoeyen, M. E. and Colquhoun, I. J. (2003). Characterization and content of flavonoids glycosides in genetically modified tomato (Lycopersicon esculentum) fruits. J. Agric. Food Chem., 51: 2438-2446. Lee, A., Thurnham, D. I. and Chopra, M. (2000). Consumption of tomato products with olive oil but not sunflower oil increases the antioxidant activity of plasma. Free Radical Biol. Med., 29(10): 1051-1055. Lee, H. S. (2002). Characterization of major anthocyanins and the color of red-fleshed budd blood orange (Citrus sinensis). J. Agric. Food Chem., 50: 1243-1246. Leonardi, C., Ambrosino, P., Esposito, F. and Fogliano, V. (2000). Antioxidative activity and carotenoid and tomatine contents in different typologies of fresh consumption tomatoes. J. Agric. Food Chem., 48(10): 4723-4727. Leong, L. P. and Shui, G. (2002). An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem., 76(1): 69-75. Lin, T. M., Durance, T. D. and Scaman, C. H. (1998). Characterization of vacuum microwave, air and freeze dried carrot slices. Food Res. Int., 31(2): 111-117. Litchfield, R. J. and Liapis, A. I. (1979). An adsorption-sublimation model for a freeze-dryer. Chem. Eng. Sci., 34: 1085-1090. Liu, J., Chang, S. K. and Wiesenborn, D. (2005). Antioxidant properties of soybean isoflavone extract and tofu in vitro and in vivo. J. Agric. Food Chem., 53(6): 2333-2340. Masrizal, M. A., Giraus, D. W. and Driskell, J. A. (1997). Retention of vitamin C, iron, and beta-carotene in vegetables prepared using different cooking methods. J. Food Quality, 20: 403-418. Matile, P., Hortensteiner, S., Thomas, H. and Krautler, B. (1996). Chlorophyll breakdown in senescent leaves. Plant physiol., 112(4): 1403-1409. Meryman, H. T. (1976). Historical recollections of freeze-drying. Dev. Biol. Stand., 36: 29-32. Meyskens, F. L. and Manetta, A. (1995). Prevention of cervical intraepithelial neoplasia and cervical cancer. Am. J. Clin. Nutr., 62(6): 1417S-1419S. Miller, E. C., Giovannucci, E., Erdman, J. W., Bahnson, R., Schwartz, S. J. and Clinton, S. K. (2002). Tomato products, lycopene, and prostate cancer risk. Urol. Clin. North Am., 29(1): 83-93. Miller, N. J., Rice-Evans, C. A., Davies, M. J., Gopinathan, V. and Milner, A. (1993). A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci., 84: 407-412. Mitchell, J. P., Shennan, C., Grattan, S. R. and May, D. M. (1991). Tomato fruit yield and quality under water deficit and salinity. J. Am. Soc. Hortic. Sci., 116(2): 215-221. Murcia, M. A., Lopez-Ayerra, B., Martinez-Tome, M., Vera, A. M. and Garcia-Carmona, F. (2000). Evolution of ascorbic acid and peroxidase during industrial processing of broccoli. J. Sci. Food Agr., 80(13): 1882-1886. Naczk, M. and Shahidi, F. (2006). Review: phenolics in cereals, fruits and vegetables: occurrence, extraction and analysis. J. Pharm. Biomed. Anal., 41(5): 1523-1542. Nakatani, N. (1997). Natural antioxidants: chemistry, health effects, and applications. In “Antioxidants from spices and herbs”, ed. F. Shahidi, pp. 64-75. Namiki, M. (1990). Antioxidants / antimutagens in food. Crit. Rev. Food Sci. Nutr. 29: 281-300. Noda, Y., Kaneyuki, T., Mori, A. and Packer, L. (2002). Antioxidant activities of pomegranate fruit extract and its anthocyanidins: delphinidin, cyanidin, and pelargonidin. J. Agric. Food Chem., 50(1): 166-171. Noh, N. A., Kamaralzaman, S. K., Budin, S. B. and Noh, N. A. (2005). Effects of vitamin C supplementation on free radical formation due to psychological stress. J. Psychosom Res., 58(6): S73-S73. Ogawa, K., Kawasaki, A., Nasumi, H., Nakano, M., Ikoma, Y. and M. Yano (2000). Evaluation of auraptene content in citrus fruits and their products. J. Agric. Food Chem., 48: 1763-1769. Ooomah, B. D. and Mazza, G. (1996). Flavonoids and antioxidative activities in buckwheat. J. Agric. Food Chem., 44: 1746-1750. Oyaizu, M. (1988). Antioxidative activities of browning products of glucosamine fractionated by organic-solvent and thin-layer chromatography. J. Jpn. Soc. Food Sci., 35(11): 771-775. Paschke, A. and Besler, M. (2002). Stability of bovine allergens during food processing. Ann. Allergy Asthma Immunol., 89(6): 16-20. Peng, Z., Hayasaka, Y., Iland, P. G., Sefton, M., Hoj, P. and Waters, E. J. (2001). Quantitative analysis of polymeric procyanidins (tannins) from grape (vitis vinifera) seeds by reverse phase high-performance liquid chromatography. J. Agric. Food Chem, 49: 26-31. Pinero Estrada, J. E., Bermejo Bescos, P. and Villar del Fresno, A. M. (2001). Antioxidant activity of different fractions of Spirulina platensis protean extract. Farmaco, 56(5-7): 497-500. Plumb, G. W., Lambert, N., Chambers, S. J., Wanigatunga, S., Heaney, R. K., Plumb, J. A., Aruoma, O. I., Halliwell, B. and Williamson, G. (1996). Are extracts of purified glucosinolates from cruciferous vegetables antioxidants. Free Radical Res., 25: 75-86. Porasuphatana, S., Tsai, P. and Rosen, G. M. (2003). The generation of free radicals by nitric oxide synthase. Comp. Biochem. Physiol., 134(3): 281-289. Porrini, M., Riso, P., Brusamolino, A., Berti, C., Guarnieri, S. and Visioli, F. (2005). Daily intake of a formulated tomato drink affects carotenoid plasma and lymphocyte concentrations and improves cellular antioxidant protection. Br. J. Nutr., 93(1): 93-99. Pulido, R., Bravo, L. and Saura-Calixto, F. (2000). Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J. Agric. Food Chem, 48: 3396-3402. Rao, A. V. and Agarwal, S. (1998). Bioavailability and in vivo antioxidant properties of lycopene from tomato products and their possible role in the prevention of cancer. Nutr. Cancer., 31(3): 199-203. Rao, A. V., Waseem, Z. and Agarwal, S. (1998). Lycopene content of tomatoes and tomato products and their contribution to dietary lycopene. Food Res. Int., 31(10): 737-741. Rao, S. and Muralikrishna, G. (2002). Evaluation of the antioxidant properties of free and bound phenolic acids from native and malted finger millet. J. Agric. Food Chem, 50: 889-892. Re, R., Bramley, P. M. and Rice-Evans, C. (2002). Effects of food processing on flavonoids and lycopene status in a Mediterranean tomato variety. Free Radic. Res., 36(7): 803-810. Rice-Evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M. and Pridham, J. B. (1995). The relative antioxidant activities of plantderived polyphenolic flavonoids. Free Radic. Res., 22: 375-383. Robak, J. and Gryglewski, R. J. (1988). Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol., 37: 837-841. Robards, K., Prenzler, P. D., Tucker, G., Swatsitang, P. and Glover, W. (1999). Phenolic compounds and their role in oxidative processes in fruits. Food Chem., 66(4): 401-436. Rommel, A. and Wrolstad, R. (1993). Influence of acid and base hydrolysis on the phenolic composition of red raspberry juice. J. Agric. Food Chem, 41: 1237-1241. Sahlin, E., Savage, G. P. and Lister, C. E. (2004). Investigation of the antioxidant properties of tomatoes after processing. J. Food Compost. Anal., 17: 635-647. Sankat, C. K., Castaigne, F. and Maharaj, R. (1996). The air drying behaviour of fresh and osmotically dehydrated banana slices. Int. J. Food Sci. Tech., 31: 123-135. Sant''Ana, H. M. P., Stringheta, P. C., Brandao, S. C. C. and Azeredo, R. M. C. d. (1998). Carotenoid retention and vitamin A value in carrot (Daucus carota L.) prepared by food service. Food Chem., 61(1): 145-151. Seybold, C., Frohlich, K., Bitsch, R., Otto, K. and Bohm, V. (2004). Changes in contents of carotenoids and vitamin e during tomato processing. J. Agric. Food Chem., 52: 7005-7010. Shahidi, F., Janitha, P. K. and Wanasundara, P. D. (1992). Phenolic antioxidants. Crit. Rev. Food Sci. Nutr., 32(1): 67-103. Shi, J. and Le Maguer, M. (2000). Lycopene in tomatoes: Chemical and physical properties affected by food processing. Crit. Rev. Biotechnol., 20(4): 293-334. Shi, J., Le Maguer, M., Kakuda, Y., Liptay, A. and Niekamp, F. (1999). Lycopene degradation and isomerization in tomato dehydration. Food Res. Int., 32(1): 15-21. Shimada, K., Fujikawa, K., Yahara, K. and Nakamura, T. (1992). Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 40(6): 945-948. Siddhuraju, P., Mohan, P. S. and Becker, K. (2002). Studies on the antioxidant activity of Indian Laburnum (Cassia fistula L.): a preliminary assessment of crude extracts from stem bark, leaves, flowers and fruit pulp. Food Chem., 79(1): 61-67. Sies, H. and Krinsky, N. I. (1995). The present status of antioxidant vitamins and beta-carotene. Am. J. Clin. Nutr., 62(6): S1299-S1300. Stahl, W. and Sies, H. (1992). Uptake of lycopene and its geometrical-isomers is greater from heat-processed than from unprocessed tomato juice in humans. J. Nutr., 122(11): 2161-2166. Steinmetz, K. A. and Potter, J. D. (1996). Vegetables, fruit, and cancer prevention: a review. J. Am. Diet. Assoc., 96: 1027-1039. Stevens, M. A., Kader, A. A., Albright-Holton, M. and Algazi, M. (1977). Genotypic variation for flavor and composition in fresh market tomatoes. J. Am. Soc. Hortic. Sci., 102: 680-689. Stintzing, F. C. and Carle, R. (2005). Cactus stems (Opuntia spp.): a review on their chemistry, technology, and uses. Mol. Nutr. Food Res., 49(2): 175-194. Szeto, Y. T., Tomlinson, B. and Benzie, I. F. F. (2002). Total antioxidant and ascorbic acid content of fresh fruit and vegetables: implication for dietary planning and food preservation. Br. J. Nutr., 87: 55-59. Takeoka, G. R., Dao, L., Flessa, S., Gillespie, D. M., Jewell, W. T., Huebner, B., Bertow, D. and Ebeler, S. E. (2001). Processing effects on lycopene content and antioxidant activity of tomatoes. J. Agric. Food Chem., 49(8): 3713-3717. Thamas, J. (1995). The role of free radicals and antioxidants : How do we know that are working. Crit. Rev. Food Sci. Nutr., 35(1): 21-39. Toomey, S., McMonagle, J. and Roche, H. M. (2006). Conjugated linoleic acid: a functional nutrient in the different pathophysiological components of the metabolic syndrome. Curr. Opin. Clin. Nutr. Metab. Care, 9(6): 740-747. Toor, R. K. and Savage, G. P. (2005). Antioxidant activity in different fractions of tomatoes. Food Res. Int, 38: 487-494. Veloglu, Y. S., Mazza, X., Gao, L. and Oomah, B. D. (1998). Antioxidant activity and total phenolics in selected fruits, vegetables and grain products. J. Agri. Food Chem., 46: 4113-4117. Wang, H., Cao, G. and Prior, R. (1997). Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem, 45: 304-309. Wang, H., Cao, G. H. and Prior, R. L. (1996). Total antioxidant capacity of fruits. J. Agric. Food Chem., 44(3): 701-705. Wen, D., Li, C., Di, H., Liao, Y. and Liu, H. (2005). A universal HPLC method for the determination of phenolic acids in compound herbal medicines. J. Agric. Food Chem., 53: 6624-6629. Wong, R. G. and Yen, G. C. (1997). Antioxidative action of mungbean sprouts, soybean and radish sprouts. J. Agric. Chem. Soc. (Taiwan), 35: 661-670. Xu, Z. and Godber, J. S. (1999). Purification and Identification of Components of γ-Oryzanol in Rice Bran Oil. J. Agric. Food Chem., 47: 2724-2728. Zainuddin, A., Pokorny, J. and Venskutonis, R. (2002). Antioxidant activity of sweetgrass (Hierochloe odorata Wahlnb.) extract in lard and rapeseed oil emulsions. Nahrung, 46(1): 15-17. Zamora, R., Hidalgo, F. J. and Tappel, A. L. (1991). Comparative antioxidant effectiveness of dietary beta-carotene, vitamin E, selenium and coenzyme Q10 in rat erythrocytes and plasma. J. Nutr., 121: 50-56. Zanoni, B., Peri, C., Nani, R. and Lavelli, V. (1999). Oxidative heat damage of tomato halves as affected by drying. Food Res. Int., 31(5): 395-401. Zhang, Y. S., Talalay, P., Cho, C. G. and Posner, G. H. (1992). A major inducer of anticarcinogenic protective enzymes from broccoli isolation and elucidation of structure. P. Natl. Acad. Sci. USA, 89(6): 2399-2403. Zhang, Z., Kou, X., Fugal, K. and McLaughlin, J. (2004). Comparison of hplc methods for determination of anthocyanins and anthocyanidins in bilberry extracts. J. Agric. Food Chem, 52: 688-691.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3559-
dc.description.abstract番茄是一年四季常見的蔬果,盛產於冬季與春季。番茄含有豐富的營養成分,並具有很強的抗氧化能力。文獻也曾指出,常食用新鮮番茄與其相關產品能有效預防癌症與心血管疾病。番茄因不耐久藏,所以除新鮮食用外,多用以製作成各式產品,如番茄醬、番茄汁、番茄糊、番茄乾、番茄粉等,或當作食品添加物做成各類食品。然而番茄於加工處理時,可能導致營養成分與抗氧化活性遭受破壞,如何改變番茄之加工條件,期使番茄產品能保留更多的營養成分與抗氧化活性將是當今產業界研發重點。 因此,本研究共分三個部分。第一部分在於探討四種品種番茄,包括金艷(Chin-Yan, CY)、荷蘭黃金(Holland-Golden, HG)、聖女(Sheng-Neu, SN)、以及桃太郎(Taur-Tay-Lang, TTL)番茄等之抗氧化性。分別利用親脂性溶劑( THF/PE, TPE )與親水性溶劑(磷酸緩衝液, pH 7.4)加以萃取番茄中之抗氧化成分,藉以探討親脂性與親水性抗氧化物含量與活性之關係。抗氧化成分之分析包含總酚、總類黃酮、茄紅素及總抗壞血酸,並將此四種成分之總和定義為總抗氧化含量。再者,抗氧化活性之評估則利用四種不同的方法加以測定,分別為還原力、亞鐵離子螫合能力、DPPH自由基清除能力,以及超氧基清除活性等,並以此四種抗氧化活性之平均值定義為抗氧化力指數(antioxidative performance index, API),以作為評估各品種番茄之抗氧化能力。研究結果顯示,以TPE溶液所萃取之金艷品種番茄具有最高總抗氧化成分與抗氧化力。再由各品種番茄之總抗氧化含量與抗氧化力指數之關係,具有一個良好之線性關係(r2=0.9174)。表示當番茄中所含之總抗氧化含量愈高則其抗氧化能力愈強。 第二部分在於評估兩種乾燥方式(冷凍乾燥與熱風乾燥)對番茄抗氧化性之影響。本實驗利用金艷與桃太郎兩種品種番茄為樣本,分別以冷凍乾燥與熱風乾燥處理,再利用TPE萃取液抽提番茄之抗氧化成分,以探討兩種乾燥處理對番茄抗氧化活性及抗氧化成分含量之影響。研究結果顯示,在抗氧化成分之定量分析方面,則總抗壞血酸、總類黃酮素、以及總多酚類之含量皆以新鮮番茄中的含量較高;而經熱風乾燥後之產品則有顯著的降低;經冷凍乾燥之產品,其減少程度則較少。再於茄紅素含量之比較,新鮮番茄中以桃太郎品種之茄紅素含量最高,而經冷凍乾燥後,其茄紅素含量只有少量的下降,但經熱風乾燥之產品,其茄紅素則有明顯降低之情形。在抗氧化活性之評估方面,結果顯示番茄萃取濃度愈高則其抗氧化活性則愈強。此外,由研究結果也發現,不同品種之番茄採用相同之乾燥方式其抗氧化力較為相似。再以不同乾燥處理之比較,番茄經冷凍乾燥具有較佳之抗氧化力,而經熱風乾燥之產品則表現較差。顯示番茄經冷凍乾燥後可保留較多的抗氧化成分,因此,番茄以冷凍乾燥處理將比熱風乾燥可以得到較佳之產品品質。 第三部分在於探討不同熱風乾燥溫度與乾燥時間,對番茄抗氧化成分之影響。本實驗以六種品種番茄,包含了黃色品種的日本黃金(Japan-Golden, JG)、金艷(Chin-Yan, CY)及荷蘭黃金(Holland-Golden, HG);與紅色品種的荷蘭紅(Holland-Red, HR)、聖女(Sheng-Neu, SN)及桃太郎(Taur-Tay-Lang, TTL)番茄等。在三種不同溫度下(40℃、80℃、及120℃)熱風乾燥四小時,並且於乾燥過程中取樣,取樣時間分別為0、15、30、45、60、75、90、120、150、180及240 min,再分析各樣品中之茄紅素與總抗氧化成分之含量。總抗氧化成分則包括了總酚類、總類黃酮素、總抗壞血酸及茄紅素。研究結果顯示,各品種番茄於三種乾燥溫度,乾燥時間在60分鐘以下時,茄紅素之含量呈現顯著增加的趨勢。然而,在120℃下,乾燥時間超過75分鐘以上,則紅色品種番茄之茄紅素含量卻有急速下降之情形發生。此結果再與各品種番茄之總抗氧化含量相比較,發現總抗氧化含量與茄紅素之升降,存在一個極限值(500 mg/100 g DM)。當總抗氧化含量在500 mg以上時,各品種番茄之茄紅素則呈現上升之趨勢;相反的,當總抗氧化含量低於此數值時,則茄紅素有明顯下降之趨勢。因此,番茄於乾燥過程中,茄紅素之變化受到番茄中所含之總抗氧化成分含量之影響而改變。zh_TW
dc.description.abstractTomato, rich in antioxidants is an important vegetable and fruit in daily dietary. Consumption of tomato products has been associated with decreased risk of cancers. Many studies have shown the close relation between the intake of vegetables and cancer prevention. Due to tomato can't long time store in room temperature, therefore, tomatoes have to be processed, dried, and used as a component for various vegetable dishes and food additives. However, during the heating processing, tomato products might show some oxidative damage due to the exposure to heat and oxygen. It is important how to remain the antioxidant content of tomato products. This study contains three parts. The first part is investigating two extraction approaches using tetrahydrofuran/petroleum ether (TPE) solvent and phosphate buffer (pH 7.4) respectively were carried out to process tomatoes. Four tomato cultivars were used as the testing models and the antioxidant contents and antioxidative properties of the extracts were measured. To evaluate the multiple antioxidative performances, an antioxidative performance index (API) was defined as the average of four antioxidative assays, i.e. relative reducing power, ferrous ion chelating ability, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, and superoxide radical-scavenging activity. It showed that a linear correlation (r2 = 0.9174) could be obtained between the total antioxidant contents and the API. The concept of representing the antioxidative capacities by an index is helpful to the evaluation of the antioxidative values of the complex compounds in all respects. In the second part, two varieties of tomatoes were used to study the effects of different drying processes, freeze-dried (FD) and hot-air-dried (AD), on the antioxidant properties of tomatoes. In the quantitative analysis of antioxidative components, fresh tomato had the highest amount of total ascorbic acid, total flavonoids, and total phenolics, meanwhile, fresh TTL tomato contained the highest amount of lycopene. In the analysis of antioxidative activity, fresh tomato reveals the highest antioxidant ability. However, comparison of FD and AD processing, the FD products have higher antioxidative activity. The third part was study the effects of varieties of tomatoe processing temperature (40℃, 80℃, and 120℃), and drying timing (0-240 min) during air-drying process on lycopene content for tomatoes were investigated. Meanwhile, the total antioxidant contents (TACs), including amount of total phenolics, total flavonoids, total ascorbic acid, and lycopene, were also measured. The result showed that lycopene content increased under air-drying process during the first 60 min. However, after drying for 75 min at 120 ℃, the red tomato cultivars, i.e. HR, SN, and TTL, exhibited a significant decrease in lycopene content. Referring to the TACs of all cultivars in the drying process, a threshold level of TAC (500 mg/100 g dry matter of tomato) could be defined. It was observed that while the level of TACs was lower than this value, lycopene content would drop dramatically under air-drying processing.en_US
dc.description.tableofcontents封面內頁 審核頁 授權頁 誌謝 中文摘要 i 英文摘要 iv 目錄 vii 表目錄 xi 圖目錄 xii 第一章 緒論 1 第二章 文獻整理 5 2.1番茄簡介 5 2.2蔬果之乾燥處理 6 2.2.1熱風乾燥 7 2.2.2冷凍乾燥 9 2.3自由基之介紹 11 2.4抗氧化劑之介紹 12 2.4.1抗氧化反應機制 12 2.4.2抗氧化劑之種類 14 2.5天然抗氧化劑 21 2.5.1植物性食品之來源 23 2.5.2植物性之抗氧化物質種類 25 2.6抗氧化成分之萃取 38 2.7抗氧化活性之測定原理 40 2.7.1還原力測定 41 2.7.2亞鐵離子螯合力測定 41 2.7.3 DPPH自由基清除力測定 42 2.7.4 超氧基清除活性測定 42 第三章 兩種萃取溶液對四種品種番茄新鮮果實 抗氧化性差異之研究…………………. 44 3.1前言 44 3.2材料與方法 46 3.2.1實驗材料 46 3.2.2實驗藥品 47 3.2.3儀器設備 49 3.2.4外觀特性分析 50 3.2.5不同極性溶劑之萃取 50 3.2.6抗氧化成分之定量分析 51 3.2.7抗氧化活性之分析 53 3.2.8統計分析 55 3.3結果和討論 55 3.3.1番茄之特性分析 55 3.3.2抗氧化成分含量之分析 55 3.3.3抗氧化活性之評估 60 3.4結論 70 第四章 冷凍乾燥與熱風乾燥對番茄抗氧化性之影響 71 4.1前言 71 4.2材料與方法 72 4.2.1實驗材料 72 4.2.2實驗藥品 72 4.2.3儀器設備 73 4.2.4材料製備 73 4.2.5抗氧化活性成分之萃取 73 4.2.6抗氧化成分之定量分析 73 4.2.7抗氧化活性之分析 74 4.2.8統計分析 75 4.3結果和討論 75 4.3.1番茄之抗氧化成分含量分析 75 4.3.2抗氧化活性之分析 80 4.4結論 90 第五章 番茄於熱風乾燥過程總抗氧化含量 與番茄紅素變化之研究 91 5.1前言 92 5.2材料與方法 93 5.2.1實驗材料 93 5.2.2實驗藥品 94 5.2.3儀器設備 94 5.2.4外觀特性分析 94 5.2.5材料製備 94 5.2.6抗氧化成分之定量分析 95 5.2.7統計分析 96 5.3結果和討論 96 5.3.1外觀特性分析 96 5.3.2茄紅素含量之變化 98 5.3.3總酚類、總類黃酮素及總抗壞血酸 含量之變化 100 5.3.4總抗氧化成分含量之變化 104 5.4結論 106 第六章 總結論 107 參考文獻 109 表目次 頁次 縮寫表……………………………………………………..…………xiii 表2.1天然抗氧化劑之來源 24 表2.2類黃酮的抗氧化特性 35 表2.3數種植物萃取抗氧化成分使用之溶劑 39 表3.1四種品種番茄之特性分析 56 表3.2 四種品種番茄利用兩種萃取方式之抗氧化成分 57 表4.1 兩種番茄之新鮮、冷凍乾燥及熱風乾燥之 總抗氧化含量及抗氧化力指數之比較 89 表5.1 六種品種番茄之外觀特性分析 97 圖目次 頁次 圖2.1 BHA及BHT之化學結構. 15 圖2.2 PG 及TBHQ之化學結構. 16 圖2.3 生育醇之化學結構. 18 圖2.4 抗壞血酸之化學結構. 20 圖2.5 EDTA之化學結構. 22 圖2.6 類胡蘿蔔素之化學結構. 27 圖2.7茄紅素之化學結構. 29 圖2.8花青素類之化學結構. 31 圖2.9類黃酮之化學結構. 34 圖2.10葉綠素之化學結構. 37 圖3.1 四種番茄之TPE與PBE萃出物及α- tocopherol與 BHA之甲醇溶液相對還原力之比較. 61 圖3.2 四種番茄之TPE與PBE萃出物及α- tocopherol與 BHA之甲醇溶液亞鐵離子螯合能力之比較. 63 圖3.3 四種番茄之TPE與PBE萃出物及α- tocopherol與 BHA之甲醇溶液DPPH自由基清除活性之比較. 65 圖3.4 四種番茄之TPE與PBE萃出物及α- tocopherol與 BHA之甲醇溶液超氧基清除活性之比較 66 圖3.5 四種番茄之TPE與PBE萃出物之總抗氧化成分 含量(TAC)與抗氧化力指數(API)之比較 68 圖3.6金艷(CY)品種番茄之TPE與PBE萃出物與 BHA及α-Toc之四種抗氧化力測定值之比較. 69 圖4.1 兩種品種番茄經冷凍乾燥及熱風乾燥之 總抗壞血酸含量之比較. 76 圖4.2 兩種品種番茄經冷凍乾燥及熱風乾燥之 總酚類含量之比較. 78 圖4.3 兩種品種番茄經冷凍乾燥及熱風乾燥之 總類黃酮素含量之比較. 79 圖4.4 兩種品種番茄經冷凍乾燥及熱風乾燥之 茄紅素含量之比較. 81 圖4.5 兩種番茄冷凍乾燥與熱風乾燥之TPE萃出物及 α-Toc與BHA之甲醇溶液相對還原力之比較. 82 圖4.6 兩種番茄冷凍乾燥與熱風乾燥之TPE萃出物及 α-Toc與BHA之甲醇溶液亞鐵離子螯合能力之比較. 84 圖4.7 兩種番茄冷凍乾燥與熱風乾燥之TPE萃出物及 α-Toc與BHA之甲醇溶液DPPH自由基清除活性 之比較. 86 圖4.8 兩種番茄冷凍乾燥與熱風乾燥之TPE萃出物及 α-Toc與BHA之甲醇溶液超氧基清除活性之比較. 88 圖5.1 六種品種番茄於不同乾燥溫度之茄紅素 含量變化情形. 99 圖5.2 六種品種番茄於不同乾燥溫度之總酚類 含量變化情形. 101 圖5.3 六種品種番茄於不同乾燥溫度之總類黃酮 含量變化情形. 102 圖5.4 六種品種番茄於不同乾燥溫度之總抗壞血酸 含量變化情形. 103 圖5.5 六種品種番茄於不同乾燥溫度之總抗氧化 含量變化情形. 105zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0801200713162100en_US
dc.subjectTomatoen_US
dc.subject番茄zh_TW
dc.subjectantioxidanten_US
dc.subjectlycopeneen_US
dc.subjectReducing poweren_US
dc.subjectFerrous ion chelating poweren_US
dc.subjectDPPH scavenging activityen_US
dc.subjectSuperoxide radical scavenging activityen_US
dc.subject抗氧化zh_TW
dc.subject茄紅素zh_TW
dc.subject相對還原力zh_TW
dc.subject亞鐵離子螯合力zh_TW
dc.subjectDPPH 自由基清除力zh_TW
dc.subject超氧基清除活性zh_TW
dc.title不同品種及不同乾燥方法對番茄抗氧化活性之影響zh_TW
dc.titleInvestigation in antioxidant activities of various tomatoes at different drying processesen_US
dc.typeThesis and Dissertationzh_TW
Appears in Collections:化學工程學系所
文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.