Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3561
標題: 由聚胺類操控層狀黏土之層距以製備蛋白質-黏土複合材
Novel Preparation of Protein-Clay Hybrids from Stepwise Polyamine Intercalation of Layered Silicates
作者: 魏郡萩
Wei, Jiun-Chiou
關鍵字: proteon
蛋白質
intercalation
poly(oxyalkylene)-diamine
插層
聚醚胺
出版社: 化學工程學系所
引用: 1. (a) Strawhecker, K. E.; Manias, E. Chem. Mater. 2000, 12, 2943. (b) Wang, H.; Zhao, T.; Zhi, L.; Yan, Y.; Yu, Y. Macromol. Rapid commun. 2002, 23, 44. 2. Kagan, C. R.; Mitzi, D. B.; Dimitrakopoulos, C. D. Science 1999, 286, 945. 3. Wang, C.; Shim, M.; Sionnest, P. G. Science 2001, 291, 2390. 4. Lau, K. T.; Hui, D. Compos. Pt. B-Eng. 2002, 33, 263. 5. Chou, C. C.; Shieu, F. S. ; Lin, J. J. Macromolecules 2003, 36, 2187. 6. Huang, H. Y.; Chen, W. F.; Kuo P. L. J. Phys. Chem. B 2005, 109, 24288. 7. (a) Zen, J. M.; Lo, C. W.; Chen, P. J. Anal. Chem. 1997, 69, 1669. (b) Zen, J. M.; Kumar, A. S. Anal. Chem. A-Pages 2004, 76, 205A. 8. (a) Jayakrishnan, A.; Jemeela, S. R. Biomaterials 1996, 17, 471. (b) Gan, Q.; Wang, T.; Cochrane, C.; McCarron, P. Colloid Surf. B-Biointerfaces 2005, 44, 65. 9. Tsai, C. C.; Chang, Y.; Sung, H. W.; Hsu, J. C.; Chen, C. N. Biomaterials 2001, 22, 523. 10. (a) Ressine, A.; Ekstrom, S.; Marko-Varga, G.; Laurell, T. Anal. Chem. 2003, 75, 6968. (b) Mansur, H. S.; Lobato, Z. P.; Orefice, R. L.; Vasconcelos, W. L.; Oliveira, C.; Machado, L. J. Biomacromolecules 2000, 1, 789. (c) Shriver-Lake, L. C.; Gammeter, Wm. B.; Bang, S. S.; Pazirandeh, M. Anal. Chim. Acta 2002, 470, 71. 11. Kauffmann, C.; Shoseyov, O.; Shpigel, E.; Bayer, E. A.; Lamed, R.; Shoham, Y.; Mandelbaum, R. T. Environ. Sci. Technol. 2000, 34,1292. 12. Shchipunov, Y. A.; Karpenko, T. Yu.; Bakunina, I. Yu.; Burtseva, Y. V., Zvyagintseva T. N. J. Biochem. Biophys. Methods 2004, 58, 25. 13. Dumitriu, S. Chornet, E. Adv. Drug Deliv. Rev. 1998, 31, 223. 14. Causserand, C.; Kara, Y.; Aimar, P. J. Membr. Sci. 2001, 186, 165. 15. (a) De Cristofaro, A.; Violante, A. Appl. Clay Sci. 2001, 19, 59. (b) Naidja, A.; Huang, P. M.; Bollag, J. M. J. Mol. Catal. A: Chem. 1997, 115, 305. 16. Giannelis, E. P. Adv. Mater. 1996, 8, 29. 17. Choy, J. H.; Kwak, S. Y.; Jeong, Y. J.; Park, J. S. Angew. Chem., Int. Ed. 2000, 39, 4041. 18. (a) Dumat, C.; Quiquampoix, H.; Staunton, S. Environ. Sci. Technol. 2000, 34, 2985. (b) Zhou, Y.; Hu, N.; Zeng, Y.; Rusling, J. F. Langmuir 2002, 18, 211. (c) Kelleher, B. P.; Oppenheimer, S. F.; Kingery, W. L.; Han, F. X.; Willeford, K. O.; Simpson, M. J.; Simpson, A. J. Langmuir 2003, 19, 9411. 19. Fu, X.; Qutubuddin, S. Polymer 2001, 42, 807. 20. Lin, J. J.; Chen, Y. M. Langmuir 2004, 20, 4261. 21. (a) Lin, J. J.; Chen, I. J.; Wang, R.; Lee, R. J. Macromolecules 2001, 34, 8832. (b) Lin, J. J.; Chen, I. J.; Chou, C. C. Macromol. Rapid Commun. 2003, 24, 492. (c) Chou, C. C.; Chang, Y. C.; Chiang, M. L.; Lin, J. J. Macromolecules 2004, 37, 473. 22. Alexandre, M.; Dubois, P. Mater. Sci. Eng. R-Rep. 2000, 28, 1. 23. (a) Osman M. A.; Suter U. W. J. Colloid Interface Sci. 1999, 214, 400. (b) Osman M. A.; Ernst M.; Meier B. H.; Suter U. W. J. Phys. Chem. B 2002, 106, 653. 24. Theng, B. K. G. in Formation and Properties of Clay-Polymer Complexes (Elsever, 1979). 25. Tyan, H. L.; Leu, C. M.; Wei, K. H. Chem. Mater., 2001, 13, 222. 26. Liu, Z. H.; Wang, Z. M.; Yang, X.; Ooi, K. Langmuir 2002, 18, 4926. 27. Godjevargova, T.; Aleksieva, Z.; Ivanova, D. Proc. Biochem. 2000, 35, 699. 28. Lin, Y.; Lu, F.; Tu, Y.; Ren, Z. Nano Lett. 2004, 4, 191. 29. Puskas, J. E.; Dahman, Y.; Margaritis, A.; Cunningham, M. Biomacromolecules; 2004, 5, 1412. 30. Wang, A. A.; Mulchandani, A.; Chen, W. Biotechnol. Prog. 2001, 17, 407. 31. Blankespoor, R.; Limoges, B.; Schollhorn, B.; Syssa-Magale, J.-L.; Yazidi, D. Langmuir 2005, 21, 3362. 32. Wang, Q.; Gao, Q.; Shi, J. J. Am. Chem. Soc. 2004, 126, 14346. 33. Akelah, A.; Moet, A. J. Appl. Polym. Sci.: Appl. Polym. Symp. 1994, 55, 153. 34. Usuki, A.; Hasegawa, N.; Kadoura, H.; Okamoto, T. Nano Lett. 2001, 1, 271. 35. Zanetti, M.; Lomakina, S.; Camino, G. Macromol. Mater. Eng. 2000, 279, 1. 36. Cao, C. X.; Zhang, W.; Qin, W. H.; Li, S.; Zhu, W.; Liu, W. Anal. Chem. 2005, 77, 955. 37. Musale, D. A.; Kulkarni, S. S. J. Membr. Sci. 1997, 136, 13. 38. LeBaron, P. C.; W., Z.; Pinnavaia, T. J. Appl. Clay Sci 1999, 15, 11. 39. Ray, S. S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539. 40. (a) Gil, E. S.; Hudson, S. M. Prog. Polym. Sci. 2004, 29, 1173-1222. (b) Mao, H.; Li, C.; Zhang, Y.; Bergbreiter, D. E.; Cremer, P. S. J. Am. Chem. Soc. 2003, 125, 2850-2851. 41. Kodama, T.; Higuchi, T.; Shimizu K. I.; Komarneni, S.; Hoffbauerd, W.; Schneider, H. J. Mater. Chem. 2001, 11, 2072. 42. Lin, J. J.; Juang, T. Y., Wei, J. C.; Tsai, W. C. J. Am. Chem. Soc. 2006, submitted.
摘要: 牛血清蛋白 (BSA) 與矽酸鹽層黏土可經由直接插層法或逐步插層法,製備出層間距達~64 Å之複合材料。原始的蒙托土 (Na+-MMT) 與人工合成氟化雲母 (Na+-mica) 藉由離子交換反應將聚醚胺 (POA-amine) 插層進入層間而得高層間距之改質黏土 (由原始層距為12 Å 經由不同的聚醚胺改質可提升至18~53 Å),而此改質黏土經由POA-amine撐開層間距後隨後可允許蛋白質進入層間,並且維持BSA之構形使其在層間以未壓縮的形式存在 (d spacing = 60~64 Å)。為比較其差異性,使用Na+-mica進行直接插層反應,僅得到吸附在黏土表面或部分已壓縮形式進入層間,而經不同插層步驟而得之複合材更進一步地利用X-ray,TGA,DFM 和TEM印證。此分析發現,經由直接和逐步程序使生物性巨分子進入層間,已被成功製備,為一新方法用於捕捉並固定生物性巨分子於矽酸鹽層,未來可用於藥物或生物感測器之應用。
Hybrids of the model bovine serum albumin (BSA) protein and layered silicate clay with d spacing of ~64 Å were prepared from either direct or stepwise intercalation. The pristine montmorilloinite (Na+-MMT) and synthetic fluorinated mica (Na+-mica) was first modified by poly(oxyalkylene)-diamine (POA-amine) salts to a highly-expanded silicate (from the pristine 12 Å to 18~53 Å by different polyamine salts) which became accessible for BSA protein embedding. Subsequent substitution allowed the embedding of BSA into the layered silicate clay in an uncompressed conformation (d spacing = 60~64 Å). For comparison, direct intercalation in Na+-mica rendered only the silicates adsorbed with proteins on the outer surfaces or low d spacing (30 Å) embedment with the compressed BSA. The resultant silicate hybrids were characterized by X-ray diffractometry (XRD), thermal gravimetric analyzer (TGA), dynamic mode atomic force microscopy (DFM) and transmission electron microscopy (TEM). Both of direct and stepwise process of embedding large molecules into the silicate gallery have been successfully developed as a new method for encapsulating biomacromolecules within the rigid silicate layers which may be suitable for medical and biosensor applications.
URI: http://hdl.handle.net/11455/3561
其他識別: U0005-0906200610360500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0906200610360500
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.