Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3564
標題: 低強度超音波與低功率雷射對內皮細胞活性之影響
The effects low-intensity ultrasound and low-energy laser on the functions of endothelial cells
作者: 王冠卜
Wang, Kuan-Pu
關鍵字: low-intensity ultrasound
低強度超音波
endothelial cells
eNOS
內皮細胞
內皮型一氧化氮合成
出版社: 化學工程學系所
引用: 1. Kaufman, J. J., and Einhorn, T. A. (1993). Ultrasound assessment of bone. J Bone Miner Res 8, 517-25. 2. Nyborg, W. L. (2000). Biological effects of ultrasound: development of safety guidelines. Part I: personal histories. Ultrasound Med Biol 26, 911-64. 3. Nyborg, W. L. (2001). Biological effects of ultrasound: development of safety guidelines. Part II: general review. Ultrasound Med Biol 27, 301-33. 4. Sato, W., Matsushita, T., and Nakamura, K. (1999). Acceleration of increase in bone mineral content by low-intensity ultrasound energy in leg lengthening. J Ultrasound Med 18, 699-702. 5. Barzelai, S., Sharabani-Yosef, O., Holbova, R., Castel, D., Walden, R., Engelberg, S., and Scheinowitz, M. (2006). Low-intensity ultrasound induces angiogenesis in rat hind-limb ischemia. Ultrasound Med Biol 32, 139-45. 6. Nolte, P. A., van der Krans, A., Patka, P., Janssen, I. M., Ryaby, J. P., and Albers, G. H. (2001). Low-intensity pulsed ultrasound in the treatment of nonunions. J Trauma 51, 693-702; discussion 702-3. 7. Crisci, A. R., and Ferreira, A. L. (2002). Low-intensity pulsed ultrasound accelerates the regeneration of the sciatic nerve after neurotomy in rats. Ultrasound Med Biol 28, 1335-41. 8. Cook, S. D., Salkeld, S. L., Popich-Patron, L. S., Ryaby, J. P., Jones, D. G., and Barrack, R. L. (2001). Improved cartilage repair after treatment with low-intensity pulsed ultrasound. Clin Orthop Relat Res, S231-43. 9. Kusano, H., Tomofuji, T., Azuma, T., Sakamoto, T., Yamamoto, T., and Watanabe, T. (2006). Proliferative response of gingival cells to ultrasonic and/or vibration toothbrushes. Am J Dent 19, 7-10. 10. Hill, G. E., Fenwick, S., Matthews, B. J., Chivers, R. A., and Southgate, J. (2005). The effect of low-intensity pulsed ultrasound on repair of epithelial cell monolayers in vitro. Ultrasound Med Biol 31, 1701-6. 11. Miyamoto, K., An, H. S., Sah, R. L., Akeda, K., Okuma, M., Otten, L., Thonar, E. J., and Masuda, K. (2005). Exposure to pulsed low intensity ultrasound stimulates extracellular matrix metabolism of bovine intervertebral disc cells cultured in alginate beads. Spine 30, 2398-405. 12. Li, J. K., Chang, W. H., Lin, J. C., Ruaan, R. C., Liu, H. C., and Sun, J. S. (2003). Cytokine release from osteoblasts in response to ultrasound stimulation. Biomaterials 24, 2379-85. 13. Sena, K., Leven, R. M., Mazhar, K., Sumner, D. R., and Virdi, A. S. (2005). Early gene response to low-intensity pulsed ultrasound in rat osteoblastic cells. Ultrasound Med Biol 31, 703-8. 14. Chen, Y. J., Wang, C. J., Yang, K. D., Chang, P. R., Huang, H. C., Huang, Y. T., Sun, Y. C., and Wang, F. S. (2003). Pertussis toxin-sensitive Galphai protein and ERK-dependent pathways mediate ultrasound promotion of osteogenic transcription in human osteoblasts. FEBS Lett 554, 154-8. 15. Reher, P., Doan, N., Bradnock, B., Meghji, S., and Harris, M. (1998). Therapeutic ultrasound for osteoradionecrosis: an in vitro comparison between 1 MHz and 45 kHz machines. Eur J Cancer 34, 1962-8. 16. Leung, K. S., Cheung, W. H., Zhang, C., Lee, K. M., and Lo, H. K. (2004). Low intensity pulsed ultrasound stimulates osteogenic activity of human periosteal cells. Clin Orthop Relat Res, 253-9. 17. Zhang, Z. J., Huckle, J., Francomano, C. A., and Spencer, R. G. (2003). The effects of pulsed low-intensity ultrasound on chondrocyte viability, proliferation, gene expression and matrix production. Ultrasound Med Biol 29, 1645-51. 18. Parvizi, J., Wu, C. C., Lewallen, D. G., Greenleaf, J. F., and Bolander, M. E. (1999). Low-intensity ultrasound stimulates proteoglycan synthesis in rat chondrocytes by increasing aggrecan gene expression. J Orthop Res 17, 488-94. 19. Gebauer, D., Mayr, E., Orthner, E., and Ryaby, J. P. (2005). Low-intensity pulsed ultrasound: effects on nonunions. Ultrasound Med Biol 31, 1391-402. 20. Hadjiargyrou, M., McLeod, K., Ryaby, J. P., and Rubin, C. (1998). Enhancement of fracture healing by low intensity ultrasound. Clin Orthop Relat Res, S216-29. 21. Altland, O. D., Dalecki, D., Suchkova, V. N., and Francis, C. W. (2004). Low-intensity ultrasound increases endothelial cell nitric oxide synthase activity and nitric oxide synthesis. J Thromb Haemost 2, 637-43. 22. Hsu, S. H., and Huang, T. B. (2004). Bioeffect of ultrasound on endothelial cells in vitro. Biomol Eng 21, 99-104. 23. Hsu, S. H., Huang, T. B., Chuang, S. C., Tsai, I. J., and Chen, D. C. (2006). Ultrasound preexposure improves endothelial cell binding and retention on biomaterial surfaces. J Biomed Mater Res B Appl Biomater 76, 85-92. 24. Zhou, S., Schmelz, A., Seufferlein, T., Li, Y., Zhao, J., and Bachem, M. G. (2004). Molecular mechanisms of low intensity pulsed ultrasound in human skin fibroblasts. J Biol Chem 279, 54463-9. 25. Naruse, K., Miyauchi, A., Itoman, M., and Mikuni-Takagaki, Y. (2003). Distinct anabolic response of osteoblast to low-intensity pulsed ultrasound. J Bone Miner Res 18, 360-9. 26. Tang, C. H., Yang, R. S., Huang, T. H., Lu, D. Y., Chuang, W. J., Huang, T. F., and Fu, W. M. (2006). Ultrasound stimulates cyclooxygenase-2 expression and increases bone formation through integrin, FAK, phosphatidylinositol 3-kinase and Akt pathway in osteoblasts. Mol Pharmacol. 27. Gomez-Villamandos, R. J., Santisteban Valenzuela, J. M., Ruiz Calatrava, I., Gomez-Villamandos, J. C., and Avila Jurado, I. (1995). He-Ne laser therapy by fibroendoscopy in the mucosa of the equine upper airway. Lasers Surg Med 16, 184-8. 28. Gagliardi, S., Atlante, A., and Passarella, S. (1997). A novel property of adenine nucleotides: sensitivity to helium-neon laser in mitochondrial reactions. Biochem Mol Biol Int 41, 449-60. 29. Sakihama, H. (1995). Effect of a helium-neon laser on cutaneous inflammation. Kurume Med J 42, 299-305. 30. Basford, J. R. (1995). Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 16, 331-42. 31. Mester, E., Spiry, T., Szende, B., and Tota, J. G. (1971). Effect of laser rays on wound healing. Am J Surg 122, 532-5. 32. Schlager, A., Kronberger, P., Petschke, F., and Ulmer, H. (2000). Low-power laser light in the healing of burns: a comparison between two different wavelengths (635 nm and 690 nm) and a placebo group. Lasers Surg Med 27, 39-42. 33. Lee, G., Wong, E., and Mason, D. T. (1996). New concepts in pain management and in the application of low-power laser for relief of cervicothoracic pain syndromes. Am Heart J 132, 1329-34. 34. Abergel, R. P., Meeker, C. A., Lam, T. S., Dwyer, R. M., Lesavoy, M. A., and Uitto, J. (1984). Control of connective tissue metabolism by lasers: recent developments and future prospects. J Am Acad Dermatol 11, 1142-50. 35. Rochkind, S., and Ouaknine, G. E. (1992). New trend in neuroscience: low-power laser effect on peripheral and central nervous system (basic science, preclinical and clinical studies). Neurol Res 14, 2-11. 36. Yaakobi, T., Maltz, L., and Oron, U. (1996). Promotion of bone repair in the cortical bone of the tibia in rats by low energy laser (He-Ne) irradiation. Calcif Tissue Int 59, 297-300. 37. Schwartz, M., Doron, A., Erlich, M., Lavie, V., Benbasat, S., Belkin, M., and Rochkind, S. (1987). Effects of low-energy He-Ne laser irradiation on posttraumatic degeneration of adult rabbit optic nerve. Lasers Surg Med 7, 51-5. 38. Bibikova, A., and Oron, U. (1994). Attenuation of the process of muscle regeneration in the toad gastrocnemius muscle by low energy laser irradiation. Lasers Surg Med 14, 355-61. 39. Lyons, R. F., Abergel, R. P., White, R. A., Dwyer, R. M., Castel, J. C., and Uitto, J. (1987). Biostimulation of wound healing in vivo by a helium-neon laser. Ann Plast Surg 18, 47-50. 40. Mileva, M., Zlateva, G., Karabasheva, S., Hadjimitova, V., and Antonov, I. (2000). Effect of He-Ne laser treatment on the level of lipid peroxidation products in experimental cataract of rabbit eyes. Methods Find Exp Clin Pharmacol 22, 679-81.
摘要: 低強度超音波刺激在骨科修復、癌症治療與非侵入式醫學影像,至目前已被研究探討達50多年,雖有研究報導指出對於細胞生理效應有正面影響,但對於遠場超音波刺激內皮細胞的影響至今很少有文獻探討之。本研究利用遠場低強度超音波以不同刺激強度(0.5、1.0及1.5 W/cm²)刺激人類靜脈內皮細胞(HUVECs),觀察內皮細胞增生與NO釋放,並以eNOS基因與蛋白的表現與其可能的分子調控機制。研究結果指出,低強度超音波以刺激強度為1.0 W/cm²連續刺激3天,對於HUVECs細胞有抑制增生但對於其NO的釋放有一正面效果。於RT-PCR與西方墨點法的結果顯示,同樣低強度超音波以刺激強度為1.0 W/cm² 連續刺激3天對於內皮細胞eNOS的基因或蛋白上皆有提高其表現。此外,低強度超音波以刺激強度為1.0 W/cm²刺激1天並利用H89抑制PKA的活性對於內皮細胞eNOS蛋白磷酸化較具有抑制的效果,而對Akt則無明顯差異,但低強度超音波刺激內皮細胞所引發的eNOS活性的訊息傳遞則需更進一步探討研究之。低強度超音波與低功率二極體雷射刺激牛頸動脈內皮細胞,結果顯示雷射刺激對於內皮細胞的影響有較快的回應,但較無維持的效果;反之,超音波刺激對於內皮細胞的影響需要較長時間予以回應,卻可以維持較長時間的效果。
Ultrasound was transmitted through and into biological tissues as an acoustic pressure wave. Ultrasound was used widely in medicine as a therapeutic, operative, and diagnostic tool. Low-intensity ultrasound was used to accelerate fracture healing in the 1950s. The effects of low-intesity ultrasound stimulation on human umbilical vein endothelial cells (HUVECs) were investigated in this study. Low-intensity ultrasound was used to stimulate HUVECs, and its effects on cell proliferation, nitric oxide (NO) secretion, and protein expression were determined. From the study, the possible molecular mechanism of low-intensity ultrasound stimulation on endothelial cells was proposed. Exposure to 1 MHz pulsed wave ultrasound at 1.0 W/cm² for 10 min once daily for three days increased nitric oxide secretion and enhanced endothelial nitric oxide synthase (eNOS) activity. The proliferation of HUVECs did not change much when exposed to the low-intensity ultrasound. The enhancing effect on cell growth was not apparent for HUVECs. The induced phosphorylation of eNOS (Ser1177) by low-intensity ultrasound at 1.0 W/cm² for 10 min was inhibited by addition of N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinoline sulfonamide (H89, protein kinase A inhibitor). The inhibition by 2-(4-Morpholino)-8-phenyl-4H-1-benzopyran-4-one (LY294002, phosphoatidylinositol 3-kinase inhibitor) was not significant. The induced phosphorylation of Akt (Ser473) by low-intensity ultrasound at 1.0 W/cm² for 10 min was inhibited by addition of LY294002. The inhibition in the present of H89 was not significant. Our results provided indirect evidence and supported that low-intensity ultrasound promotes eNOS activity via the PI3K/Akt/PAK signaling pathway.Low-energy laser induced bovine carotid artery endothelial cells (BECs) in NO secretion and eNOS gene expression, which was a faster response. Low-intensity ultrasound induced BECs in NO secretion and eNOS gene expression at longer terms but the effect also remain for longer period of time.
URI: http://hdl.handle.net/11455/3564
其他識別: U0005-0908200611554500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0908200611554500
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.