Please use this identifier to cite or link to this item:
標題: 利用即時監測NO控制廢水固定化系統
Control of an Immobilized Sludge System for Treatment of Wastewater by Real-Time Monitoring of NO
作者: 鄭憲安
Jheng, Sian-An
關鍵字: 一氧化氮
nitric oxide
oxidation reduction potential
monitoring and control
出版社: 生物產業機電工程學系所
引用: 1. 行政院環境保護署環境檢驗所。2005。環保署檢測方法公告。 2. 周靜娟、吳明瑞、顏培仁。2008。圖控程式與自動量測─使用LabVIEW7.X(修訂版)(附試用版及範例光碟片)。全華科技圖書股份有限公司。 3. 陳國誠。1990。生物固定化技術與產業應用。茂昌圖書有限公司, 33-84。 4. 陳國誠。2003。環境微生物實驗。藝軒圖書出版社,43-45。 5. 惠汝生。2008。LabVIEW 7.1 Express圖控程式應用─含自動量測及硬體應用(附系統應用光碟)(修訂二版)。全華科技圖書股份有限公司。 6. 余瑞芳、張鎮南、陳婉如。1996。自動ORP監控系統於好氧生物處理系統應用之初探。中國環境工程學刊6(2),165-171。 7. 吳建一、陳嘉仁、陳正坤、陳國誠。1998。固定化微生物在廢水處理程序之應用─間歇曝氣操作效率之探討。第二十三屆廢水處理技術研討會論文集,108-113。 8. 張鎮南、陳澤民、黃俊雄、林世祥。1999。利用ORP控制生物脫硝可行性之探討。第二十四屆廢水處理技術研討會論文集,199-204。 9. 曾四恭、張志誠。1999。比較不同固定化方法固定氫氣自營脫硝菌Alcaligenes eutrophus處理水源中硝酸鹽之研究。第二十四屆廢水處理技術研討會論文集,529-534。 10. 曾治乾、鄭維薇、陳榮耀、陳文卿、鄭幸雄。1998。內包性生物擔體微結構與菌相之觀察分析研究。第二十三屆廢水處理技術研討會論文集,128-133。 11. 趙守誠、吳建一、陳慶彥、陳國誠。1999。固定化微生物在廢水處理程序之應用(IV)在ORP即時監控系統下探討間歇曝氣操作效率。第二十四屆廢水處理技術研討會論文集,53-58。 12. 李豫洪。2007。探討半導體業之水資源回收再利用及處理分析--NDL為例。國立交通大學工學院碩士在職專班產業安全與防災組碩士論文,69 頁。 13. 林翊逵。2005。回顧近七年來南投地區臭氧變化。國立中興大學環境工程學系碩士論文,122頁。 14. 蔡文賢。2006。缺氧-好氧生物除氮程序之操作特性研究。輔英科技大學環境工程與科學系碩士論文,100頁。 15. JD。2007。回覆問題「讀取 excel 方法」。LabVIEW360論壇網,。發表日期:2007/8/02 16. 陳國誠、林瑩峰。1991。聚乙烯醇微生物或酵素固定化擔體之製法及其應用。經濟部智慧財產局,公告號00199906。 17. APHA, 1992. Standard methods: For the examination of water and wastewater. 18. ASABE, 2006. Psychrometric Data. ASABE Standard. D271.2 APR1979(R2005). 19. Rittmann, B. E. and L. P. McCarty, 2001.Environmental Biotechnology: Principles and Applications. The McGraw-Hill Companies, Inc. 20. SSSA, 1996. Methods of Soil Analysis, Part3 Chemical Methods, 1131-1139 21. Balslev, P., A. Lynggaard-Jensen, and C. Nickelsen, 1996. Nutrient sensor based real-time on-line process control of a wastewater treatment plant using recirculation. Water Science and Technology, 33(1), 183-192. 22. Barber, William P., and David C. Stuckey, 2000. Nitrogen removal in a modified anaerobic baffled reactor (ABR): 1, denitrification. Water Research, 34(9), 2413-2422. 23. Bougard, D., N. Bernet, D. Cheneby, and J. P. Delgenes, 2006. Nitrification of a high-strength wastewater in an inverse turbulent bed reactor: Effect of temperature on nitrite accumulation. Process Biochemistry, 41(1), 106-113. 24. Chang, Ho Nam , Gi Hun Seong, Ik-Keun Yoo, Joong Kon Park, and Jin-Ho Seo, 1996. Microencapsulation of recombinant Saccharomyces cerevisiae cells with invertase activity in liquid-core alginate capsules. Biotechnology and Bioengineering, 51(2), 157-162. 25. Chen, Kuo-Cheng, Ching-Yen Chen, Juin-Wei Peng, and Jer-Yiing Houng, 2002. Real-time control of an immobilized-cell reactor for wastewater treatment using ORP. Water Research, 36(1), 230-238. 26. Chen, Kuo-Cheng, Shihn-Chang Lee, Sheng-Chi Chin, and Jer-Yiing Houng, 1998. Simultaneous carbon-nitrogen removal in wastewater using phosphorylated PVA-immobilized microorganisms. Enzyme and Microbial Technology, 23(5), 311-320. 27. Colliver, B. B. and T. Stephenson, 2000. Production of nitrogen oxide and dinitrogen oxide by autotrophic nitrifiers. Biotechnology Advances, 18(3), 219-232. 28. Foglar, Lucija, Felicita Briski, Laszlo Sipos, and Marija Vukovic, 2005. High nitrate removal from synthetic wastewater with the mixed bacterial culture. Bioresource Technology, 96(8), 879-888. 29. Fuerhacker, M., H. Bauer, R. Ellinger, U. Sree, H. Schmid, F. Zibuschka, and H. Puxbaum, 2000. Approach for a novel control strategy for simultaneous nitrification/denitrification in activated sludge reactors. Water Research, 34(9), 2499-2506. 30. Jang, J. D., J. P. Barford, Lindawati, and R. Renneberg, 2004. Application of biochemical oxygen demand (BOD) biosensor for optimization of biological carbon and nitrogen removal from synthetic wastewater in a sequencing batch reactor system. Biosensors and Bioelectronics, 19(8), 805-12. 31. Kampschreur, Marlies J., Wouter R. L. van der Star, Hubert A. Wielders, Jan Willem Mulder, Mike S. M. Jetten, and Mark C. M. van Loosdrecht, 2008. Dynamic of nitric oxide and nitrous oxide emission during full-scale reject water treatment. Water Research, 43(3), 812-826. 32. Kim, J. H., M. Chen, N. Kishida, and R. Sudo, 2004. Integrated real time control strategy for nitrogen removal in swine wastewater treatment using sequencing batch reactors. Water Research, 38(7), 3340-3348. 33. Kishida, N., J. H. Kim, M. Chen, H. Sasaki, and R. Sudo, 2003. Effectiveness of oxidation-reduction potential and pH as monitoring and control parameters for nitrogen removal in swine wastewater treatment by sequencing batch reactors. Journal of Bioscience and Bioengineering, 96(3), 285-290. 34. Konig, Andreas, Klaus Riedel, and Jorg W. Metzger, 1998. A microbial sensor for detecting inhibitors of nitrification in wastewater. Biosensors and Bioelectronics, 13(7-8), 869-874. 35. Lie, Ewa and Thomas Welander, 1994. Influence of dissolved oxygen and oxidation-reduction potential on the denitrification rate of activated sludge. Water Science and Technology, 30(6), 91-100. 36. Min, Booki, JungRae Kim, SangEun Oh, John M. Regan, and Bruce E. Logan, 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Research, 39(20), 4961-4968. 37. Nishio, Takayuki, Taro Yoshikura, Hirotsugu Mishima, Zensuke Inouye, and Hisao Itoh, 1998. Conditions for nitrification and denitrification by an immobilized heterotrophic nitrifying bacterium Alcaligenes faecalis OKK17. Journal of Fermentation and Bioengineering, 86(4), 351-356. 38. Onnerth, T. B., M. K. Nielsen, and C. Stamer, 1996. Advanced computer control based on real and software sensors. Water Science and Technology, 33(1), 237-245. 39. Papen, Hans, Regina von Berg, Ilme Hinkel, Barbara Thoene, and Heinz Rennenberg, 1989. Heterotrophic Nitrification by Alcaligenes faecalis: NO2-, NO3-,N20, and NO Production in Exponentially Growing Cultures. Applied and Environmental Microbiology, 55(8), 2068-2072. 40. Plisson-Saune, S., B. Capdeville, M. Mauret, A. Deguin, and P. Baptiste, 1996. Real-time control of nitrogen removal using three ORP bending points: Signification, control strategy and results. Water Science and Technology, 33(1), 275-280. 41. Schulthess, R. V., M. Kuhni, and W. Gujer, 1995. Release of nitric and nitrous oxides from denitrifying activated sludge. Water Research, 29(1), 215-226. 42. Song, Seung Hoon, Suk Soon Choi, Kyungmoon Park, and Young Je Yoo, 2005. Novel hybrid immobilization of microorganisms and its applications to biological denitrification. Enzyme and Microbial Technology, 37, 567-573. 43. van Rijn, Jaap, Yossi Tal, and Harold J. Schreier, 2006. Denitrification in recirculating systems: Theory and applications. Aquacultural Engineering, 34(3), 364-376. 44. Wareham, David. G., Kenneth J. Hall, and Donald S. Mavinic, 1993. Real-time control of aerobic-anoxic sludge digestion using ORP. Journal of Environmental Engineering, 119(1), 120-136. 45. Weissenbacher, Norbert, Christian Loderer, Katharina Lenz, Susanne N. Mahnik, Bernhard Wett, and Maria Fuerhacker, 2007. NOx monitoring of a simultaneous nitrifying-denitrifying (SND) activated sludge plant at different oxidation reduction potentials. Water Research, 41(2), 397-405. 46. Ye, Rick W. and Stuart M. Thomas, 2001. Microbial nitrogen cycles: physiology, genomics and applications. Current Opinion in Microbiology, 4(3), 307-312. 47. Yu, R. F., S. L. Liaw, C. N. Chang, and W. Y. Cheng, 1998. Applying real-time control to enhance the performance of nitrogen removal in the continous-flow SBR system. Water Science and Technology, 38(3), 271-280. 48. Yuan, Z. and H. Bogaert, 2001. A titrimetric respirometer measuring the nitrifiable nitrogen in wastewater using insensor-experiment. Water Research, 35(1), 180-188. 49. Zhao, Hong W., Donald S. Mavinic, William K. Oldham, and Frederic A. Koch, 1999. Controlling factors for simultaneous nitrification and denitrification in a two-stage intermittent aeration process treating domestic sewage. Water Research, 33(4), 961-970 50. Torres Jardon, Ricardo, 2004. Comparative Assessment of the Sensitivity of Ozone to Nitrogen Oxides and Volatile Organic Compounds in Two Dissimilar Metropolitan Areas of North America. Cincinnati, Oh (U.s.a.) and Mexico City, Df (Mexico) Engineering Environmental PhD, 143p.
摘要: 我們比較兩個以不同方式控制的PVA固定化污泥系統的處理效率及曝氣能量消耗。其中一個以一氧化氮(NO)作為控制參數而另一個以氧化還原電位(ORP)作為控制參數;其中一氧化氮(NO)或氧化還原電位(ORP)決定何時啟動曝氣機,LabVIEW控制程式紀錄曝氣時間。在一個5小時的操作時間裡,發現以NO監控曝氣時只有1.95小時曝氣,而以ORP監控曝氣時需2.5小時曝氣,而二者COD與TN去除率的差異不大。
We compared the treatment efficiency and the aeration energy consumption of two PVA immobilized sludge systems controlled by two different variables. One of the systems used nitric oxide (NO) as the control variable while the other used oxidation reduction potential (ORP) as the control variable. In a 5-hour operation, the NO-controlled system was aerated 1.95 hours while the ORP-controlled system was aerated 2.5 hours. The COD and TN removal efficiency for both systems were similar.
其他識別: U0005-2008201010195700
Appears in Collections:生物產業機電工程學系



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.