Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3583
標題: 奈米碳管與膠體金於電化學生物感測器上之應用
Application of Carbon Nanotube and colloid gold to electrochemical biosensor
作者: 陳燕惠
Chen, Yen-Hui
關鍵字: Multi-walls carbon nanotubes
多壁奈米碳管
Colloid gold
Glucose oxidase
Electrochemical biosensor
Protein immobilization
膠體金
葡萄糖氧化酵素
電化學式生物感測器
蛋白質固定化
出版社: 化學工程學系所
引用: [1] C. L. Morgan, D. J. New man, C. P. Price, Immunosensors: technology and opportunities in laboratory medicine. Clinical Chemistry, 1996; 42(2): 193-209. [2] 許峰碩, 奈米碳黑在免疫層析檢測上的應用, 2000: 8. [3] F. Scheller, F. Schubert, D. Pfeifer, R. Hintsche, I. Dransfeld, R. Renneberg, U. Wollenberger, K. Riedei, M. Paviova, M. Kuhn, H. G.Muller, Research and development of biosensors: a review, Analyst, 1989; 114: 653. [4] S. G. Wang, Q. Zhang, R. Wang, S. F. Yoon, J. Ahn, D. J. Yang, J. Z. Tian, J. Q. Li, Q. Zhou, Multi-walled carbon nanotubes for the immobilization of enzyme in glucose biosensors, Electrochemistry Communications, 2003; 5: 800. [5] 胡啟章, 五南圖書出版股份有限公司, 2002: 105. [6] J. Wang, Analytical electrochemistry-second edition, Wiley-VCH, New York, 2000. [7] A. J. Brad, I. R Faulkner, Electrochemichal method: fundaments and applications, Wily, New York, 2000. [8] 簡暉祐, 聚砒硌/葡萄糖氧化酵素修飾電極和白金奈米顆粒披覆在奈米碳管/全氟磺酸聚合物/葡萄糖氧化酵素薄膜電極作為生物感測器之探討, 2005: 14. [9] L. C. Clark, C. Lyons, Ann. N.Y. Acad, Electrode system for continuous monitoring in cardiovascular surgery, Science, 1962; 102: 29. [10] H. Xue, Z. Shen, Y. Li , Polyaniline-polyisoprene composite film based glucose biosensor with high permselectivity, Synthetic Metal, 2001; 124: 345. [11] A. Kumar, R. Malhotra, B. D. Malhotra, S. K. Grover, Co-immobilization of cholesterol oxidase and horseradish peroxidase in a sol-gel film, Analytic Chilmica Acta, 2000; 414: 43. [12] P. Manowitz, P. W. Stoecker, A. M. Yacyncych, Galactose biosensor s using composite polymers to prevent interferences, Biosensor and Bioelecronics, 1995; 10: 359. [13] T. Hoshl, H. Saiki, J. I. Anzai, Amperometric uric acid sensors based on polyelectrolyte multilayer films, Talanta, 2003; 61: 363. [14] S. Komaba, M. Seyama, T. Momma, T. Osaka, Potentiometric biosensor for urea based on electropolymerized electroinactive polypyrrole, Electrochimica Acta, 1997; 42: 383. [15] A. S. Jdanova, S. Poyard, A. P. Soldatkin, N. J. Renault, C. Martelet, Conductometric urea sensor use of additional membranes for the improvement of its analytical characteristics. Analytica Chimica Acta, 1996; 321: 35. [16] 董紹俊,車廣禮,謝運武.化學修飾電極, 1995:1. [17] H. Liu and J. Deng, An amperometric lactate sensor employing tetrathiafulvalene in nafion film as electron shuttle, Electrochima Acta, 1995; 40: 1845. [18] J. W. Furbee, C. R. Thomas, R. S. Kelly, M. R. Malachowski, Mediated electrochemical reduction of cytochrome c and tyrosinase at perfluorosulfonated ionomer coated electrodes, Analytical chemistry, 1993; 65: 1654. [19] 尹邦躍,奈米時代,五南: 88. [20] H. Cai, C. Xu, P. He, Y. Fang, Colloid Au-enhanced DNA immobilization for the electrochemical detection of sequence-specific DNA, Journal of Electroanalytical Chemistry, 2001; 510: 78. [21] H. Cai, Y. Wang, P. He, Y. Fang, Electrochemical detection of DNA hybridization based on silver-enhanced gold nanoparticle label , Analytica Chimica Acta, 2002; 469: 165. [22] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Structure and electronic properties of carbon nanotubes, Journal of Physical Chemistry B , 2000; 104: 2794. [23] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, Structure and electronic properties of carbon nanotubes, Journal of Physical Chemistry B, 2000; 104: 2794. [24] Iijima, Helical microtubules of graphitic carbon, Nature, 1991; 354: 56. [25] C. Dekker, Carbon nanotubes as molecular quantum wires, Physics Today, 1999; 52: 22. [26] M. M. J. Treacy, T. W. Ebbsen, J. M.Gibosn, Exceptionally high Young''s modulus observed for individual carbon nanotubes, Nature, 1996; 381: 678-680. [27] P. M.Ajayan, T. W. Ebbesen, Nanometre-size tubes of carbon, Report on Progress Physics, 1997; 60: 1025. [28] M. B. Shiflett, J. F. Pedrick, S. R. McLean, S. Subramoney, H. C. Foley, Characterization of supported nanoporous carbon membranes, Advanced Materials, 2000; 12: 21. [29] A. Rao, “Nanostuctured From of Carbon-An Overview”, International school of solid state physics-18th course: the three faucets nanostructured carbon for advanced applications (NATO-ASI), 2000; Italy. [30] D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature, 1993; 363: 605. [31] Z. W. Pan, S. S. Xie, B. H. Chang, L. F. Sun, W. Y. Zhou, G. Wang, Direct growth of aligned open carbon nanotubes by chemical vapor deposition, Chemical Physics Letters, 1999; 299: 97. [32] J. Jiao, S. Seraphin, Single-walled tubes and encapsulated nanoparticles: comparison of structural properties of carbon nanoclusters prepared by three different methods, Journal of Physics and Chemistry of Solids, 2000; 61: 1055. [33] A. C. Dillon, P. A. Parilla, J. L. Alleman, J. D. Perkins, M. J. Heben, Controlling single-wall nanotube diameters with variation in laser pulse power , Chemical Physics Letters, 2000; 316: 13. [34] J. J. Davis, K. S. Coleman, B. R. Azamian, C. B. Bagshaw , M. L. H. Green, Chemical and biochemical sensing with modified single walled carbon nanotubes, Chemistry : a European journal, 2003; 9: 3732. [35] S. Storri, T. Santoni, M. Minunni, M. Mascini, Surface modifications for the development of piezoimmunosensors, Biosensor and Bioelectron, 1998; 13: 347. [36] E. Uttenthaler, C. Kößlinger, S. Drost, Characterization of immobilization methods for African swine fever virus protein and antibodies with a piezoelectric immunosensor, Biosensor and Bioelectron, 1998; 13: 1279. [37] J. L. N. Harteveld, M. S. Nieuwenhuizen, E. R. J. Wils, Detection of staphylococcal enterotoxin B employing a piezoelectric crystal immunosensor, Biosensor and Bioelectron, 1997; 12: 661. [38] K. Yokoyama, K. Ikebukuro, E. Tamiya, I. Karube, N. Ichiki, Y. Arikawa, Highly sensitive quartz crystal immunosensors for multisample detection of herbicides, Analytica Chimica Acta, 1995; 304: 139. [39] R. M. Iannlello, A. M. Yacynych, Immobilized enzyme chemically modified electrode as an amperometric sensor, Analytical Chemistry, 1981; 53: 2090. [40] G. C. Anthony E., D. Graham, D. F. Graeme, H. O. Hill Allen, Ferrocene-mediated enzyme electrode for amperometric determination of glucose , Analytical Chemistry, 1984; 56: 667. [41] K. Narasimhan, L. B. Jr. Wingard, Enhanced direct electron transport with glucose oxidase immobilized on (aminophenyl)boronic acid modified glassy carbon electrode, Analytical Chemistry, 1986; 58: 2984. [42] S. J. Updike, G. P. Hicks, The enzyme electrode, Nature(London), 1967; 214: 986. [43] K. Takahiko, I. K. Hiroko, O. Yoshiyuki, Amperometric glucose sensors based on immobilized glucose oxidase-polyquinone system, Analytical Chemistry, 1994; 66: 1231. [44] J. Wang, L. Angnes, Miniaturized glucose sensors based on electrochemical codeposition of rhodium and glucose oxidase onto carbon-fiber electrodes, Analytical Chemistry, 1992; 64: 456. [45] P. D. Hale, L. I. Boguslavsky, T. Inagaki, H. I. Karan, H. S. Lee, Y. A. Skotheim, Y. Okamoto, Amperometric glucose biosensors based on redox polymer-mediated electron transfer, Analytical Chemistry, 1991; 63: 677. [46] V. S. Sylvia, J. P. Raymond, M. Y. Alexander, Electropolymerized 1,2-diaminobenzene as a means to prevent interferences and fouling and to stabilize immobilized enzyme in electrochemical biosensors, Analytical Chemistry, 1990; 62: 1111. [47] B. M. Keith, H. Sabahudin, Y. Liu, D. Wang, John H.T. Luong. , Electrochemical detection of carbohydrates using copper nanoparticles and carbon nanotubes , Analytica Chimica Acta , 2004; 516: 35. [48] Q. Chi, S. Dong, Flow-injection analysis of glucose at an amperometric glucose sensor based on electrochemical deposition of palladium and glucose oxidase on a glassy carbon electrode, Analytica Chimica Acta, 1993; 278: 17. [49] S. H. Lim, J. Wei, U. Lin, Q. Li, J. K. You, A glucose biosensor based on electrodeposition of palladium nanoparticles and glucose oxidase onto Nafion-solubilized carbon nanotube electrode, Biosensors and Bioelectronics, 2005; 20: 2341. [50] H. Tang, J. Chen, S. Yao, L. Nie, G. Deng, Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode, Analytical Biochemistry, 2004; 331: 89. [51] S. Hrapovic, L. Yali, K. B. Male, H. T. Luong, Electrochemical biosensing platforms using platinum nanoparticles and carbon nanotubes, Analytical Chemistry, 2004; 76: 1083. [52] C. X. Lei, S. Q. Hu, G. L. Shen, R. Q. Yu, Immobilization of horseradish peroxidase to a nano-Au monolayer modified chitosan-entrapped carbon paste electrode for the detection of hydrogen peroxide , Talanta, 2003; 59: 981. [53] T. You, O. Niwa, M. Tomita, S. Hirono, Characterization of platinum nanoparticle-embedded carbon film electrode and its detection of hydrogen peroxide, Analytical Chemistry, 2003; 75: 2080. [54] C. X. Lei, H. Wang, G. L. Shen, R. Q. Yu, Immobilization of enzymes on the nano-Au film modified glassy carbon eectrode for the determination of hydrogen peroxide and glucose, Electroanalysis, 2004; 16: 736 [55] S. Liu, H. Ju, Reagentless glucose biosensor based on direct electron transfer of glucose oxidase immobilized on colloidal gold modified carbon paste electrode , Biosensors and Bioelectronics, 2003; 19: 177. [56] V. S. Victoria, C. Sandro, B. Valter, D. J. Riley, Direct electron transfer between cytochrome P450scc and gold nanoparticles on screen-printed rhodium–graphite electrodes, Biosensors and Bioelectronics, 2005; 21: 217. [57] Y. Huang, W. Zhang, H. Xiao, G. Li, An electrochemical investigation of glucose oxidase at a CdS nanoparticles modified electrode , Biosensors and Bioelectronics, 2005; 21 : 817. [58] L. Zhang, X. Jiang, E. Wang, S. Dong, Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin, Biosensors and Bioelectronics, 2005; 21: 337. [59] M. Yang, Y. Yang, Y. Liu, G. Shen, R. Yu, Platinum nanoparticles-doped sol–gel/carbon nanotubes composite electrochemical sensors and biosensors, Biosensors and Bioelectronics, 2006; 21: 1125. [60] M. Yang, J. Jiang, Y. Yang, X. Chenb, G. Shen, R. Yu, Carbon nanotube/cobalt hexacyanoferrate nanoparticle-biopolymer system for the fabrication of biosensors , Biosensors and Bioelectronics, 2006; 21: 1791. [61] N. Zhua, Z. Chang, P. He, Y. Fang, Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubes, Analytica Chimica Acta, 2005; 545: 21. [62] Y. Yang, H. Yang, M. Yanga, Y. Liu, G. Shen, R. Yu, Amperometric glucose biosensor based on a surface treated nanoporous ZrO2/Chitosan composite film as immobilization matrix, Analytica Chimica Acta, 2004; 525: 213.
摘要: 本研究目的為製備膠體金顆粒披覆多壁奈米碳管/Nafion薄膜修飾玻璃碳電極並將電極應用於過氧化氫與葡萄糖的檢測上。在製備電極方面,以全氟磺酸聚合物薄膜(Nafion),將多壁奈米碳管與葡萄糖氧化酵素(GOD)固定在玻璃碳電極(GCE)表面後,再利用不同固定膠體金顆粒的方法,將膠體金固定到薄膜上來進行電極的修飾,固定膠體金顆粒方法有電化學還原法、電沉積法、物理吸附法、摻混法。 利用此修飾後之膠體金顆粒披覆多壁奈米碳管/Nafion薄膜修飾玻璃碳電極來偵測過氧化氫與葡萄糖的濃度。在偵測過氧化氫方面,以摻混固定法的膠體金顆粒/多壁奈米碳管/Nafion薄膜修飾玻璃碳電極(Au/MWCNTs/Nafion/GCE)可測得最大之電流訊號,當過氧化氫濃度累積到1.07mM時,電流值為8.37μA,以此方式固定葡萄糖氧化酵素(GOD)於電極上,並應用在葡萄糖的檢測。 在葡萄糖檢測中探討其最適條件,所得結果如下:葡萄糖氧化酵素(GOD) 濃度為1mg/ml、金溶液添加量為20μl、反應溶液攪拌速度為300rpm、反應溶液pH值為7時,膠體金顆粒/多壁奈米碳管/GOD/ Nafion薄膜修飾玻璃碳電極的偵測靈敏度為0.0043mM,應答時間平均約為8秒,偵測範圍為0.0043 ~ 10.07mM,線性範圍為2.07~10.07mM。
Preparations of biosensors based on the MWCNT/Nafion/glucose oxidase (GOD) coated on the thin film glassy carbon electrode (GCE) for detecting the glucose and hydrogen peroxide (H2O2) were investigated. Different methods such as electrochemical reduction, electrochemical deposition, physical adsorption, blending& prereduction(BP)were used to immobilize the gold nanoparticles onto the MWCNT/Nafion of GCE biosensor (Au/MWCNTs/Nafion/GCE), which could be applied in detection of hydrogen peroxide and glucose concentrations. With the operating votage of -0.44V, it showed the highest current of 8.37μA with the accumulation of 1.07mM H2O2 was observed when using BP approach. In this study, BP approach could give the highest current, therefore it could be further applied to the detection of glucose concentrations. Under the optimal conditions of 1mg/ml GOD, 20μl gold solution, pH7 and agitation speed of 300rpm, the sensitivity and response time of Au/GOD/MWCNT/Nafion/GCE biosensor were 0.0043 mM and 8 seconds respectively in the detecting range of 0.0043 ~ 10.07mM glucose.
URI: http://hdl.handle.net/11455/3583
其他識別: U0005-2408200614240500
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2408200614240500
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.