Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35833
標題: 探討水稻花粉OsCPK之功能與分離其下游受質蛋白
Analysis on Function of Pollen-Predominant OsCPKs & Isolation of their Downstream Substrates in Rice
作者: 方以辰
Fung, Yi-Chen
關鍵字: 水稻花粉
Substrate
受質
Rice pollen
出版社: 生物科技學研究所
引用: 汪承偉, 2011. 水稻花粉結鈣激酶與其受質蛋白生化特性與功能之研究. 國立中興大學,台中市. 歐天永, 2010. 水稻osck1及其交互作用蛋白oip30於調控花粉發育、花粉萌發與花藥開裂之角色探討. 國立中興大學,台中市. 蘇倖民, 2009. 水稻花粉結鈣激活酶osck1在花粉萌發中扮演重要的角色. 國立中興大學,台中市. Ariizumi, T., Hatakeyama, K., Hinata, K., Inatsugi, R., Nishida, I., Sato, S., Kato, T., Tabata, S., Toriyama, K., 2004. Disruption of the novel plant protein nef1 affects lipid accumulation in the plastids of the tapetum and exine formation of pollen, resulting in male sterility in arabidopsis thaliana. Plant J 39 (2), 170-81. Asano, T., Kunieda, N., Omura, Y., Ibe, H., Kawasaki, T., Takano, M., Sato, M., Furuhashi, H., Mujin, T., Takaiwa, F., Wu Cy, C.Y., Tada, Y., Satozawa, T., Sakamoto, M., Shimada, H., 2002. Rice spk, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: Phosphorylation of sucrose synthase is a possible factor. Plant Cell 14 (3), 619-28. Asano, T., Tanaka, N., Yang, G., Hayashi, N., Komatsu, S., 2005. Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: Comprehensive analysis of the cdpks gene family in rice. Plant Cell Physiol 46 (2), 356-66. Berger, F., Hamamura, Y., Ingouff, M., Higashiyama, T., 2008. Double fertilization - caught in the act. Trends Plant Sci 13 (8), 437-43. Bibikova, T.N., Zhigilei, A., Gilroy, S., 1997. Root hair growth in arabidopsis thaliana is directed by calcium and an endogenous polarity. Planta 203 (4), 495-505. Bosch, M., Cheung, A.Y., Hepler, P.K., 2005. Pectin methylesterase, a regulator of pollen tube growth. Plant Physiol 138 (3), 1334-46. Chehab, E.W., Patharkar, O.R., Cushman, J.C., 2007. Isolation and characterization of a novel v-snare family protein that interacts with a calcium-dependent protein kinase from the common ice plant, mesembryanthemum crystallinum. Planta 225 (4), 783-99. Chehab, E.W., Patharkar, O.R., Hegeman, A.D., Taybi, T., Cushman, J.C., 2004. Autophosphorylation and subcellular localization dynamics of a salt- and water deficit-induced calcium-dependent protein kinase from ice plant. Plant Physiol 135 (3), 1430-46. Chen C.Y., W.E.I., Vidali L., Estavillo A., Hepler P.K., Wu H.M., and Cheung A.Y., 2002. The regulation of actin organization by actin-depolymerizing factor in elongating pollen tubes. Plant Cell 14, 2175-2190. Chen, Y.C., Mccormick, S., 1996. Sidecar pollen, an arabidopsis thaliana male gametophytic mutant with aberrant cell divisions during pollen development. Development 122 (10), 3243-53. Cheng, S.H., Willmann, M.R., Chen, H.C., Sheen, J., 2002. Calcium signaling through protein kinases. The arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129 (2), 469-85. Curran, A., Chang, I.F., Chang, C.L., Garg, S., Miguel, R.M., Barron, Y.D., Li, Y., Romanowsky, S., Cushman, J.C., Gribskov, M., Harmon, A.C., Harper, J.F., 2011. Calcium-dependent protein kinases from arabidopsis show substrate specificity differences in an analysis of 103 substrates. Front Plant Sci 2, 36. Datta, R., Chamusco, K.C., Chourey, P.S., 2002. Starch biosynthesis during pollen maturation is associated with altered patterns of gene expression in maize. Plant Physiol 130 (4), 1645-56. Derksen J., R.T., Van Amstel T., De Win A., Doris F., and Steer, M. , 1995. Regulation of polen tube growth. . Acta Bot Neerl. 44, 93-119. Edlund, A.F., Swanson, R., Preuss, D., 2004. Pollen and stigma structure and function: The role of diversity in pollination. Plant Cell 16 Suppl, S84-97. Estruch, J.J., Kadwell, S., Merlin, E., Crossland, L., 1994. Cloning and characterization of a maize pollen-specific calcium-dependent calmodulin-independent protein kinase. Proc Natl Acad Sci U S A 91 (19), 8837-41. Geitmann, A., Snowman, B.N., Emons, A.M., Franklin-Tong, V.E., 2000. Alterations in the actin cytoskeleton of pollen tubes are induced by the self-incompatibility reaction in papaver rhoeas. Plant Cell 12 (7), 1239-51. Golovkin, M., Reddy, A.S., 2003. A calmodulin-binding protein from arabidopsis has an essential role in pollen germination. Proc Natl Acad Sci U S A 100 (18), 10558-63. Gu, Y., Fu, Y., Dowd, P., Li, S., Vernoud, V., Gilroy, S., Yang, Z., 2005. A rho family gtpase controls actin dynamics and tip growth via two counteracting downstream pathways in pollen tubes. J Cell Biol 169 (1), 127-38. Han, M.J., Jung, K.H., Yi, G., Lee, D.Y., An, G., 2006. Rice immature pollen 1 (rip1) is a regulator of late pollen development. Plant Cell Physiol 47 (11), 1457-72. Harmon, A.C., Gribskov, M., Harper, J.F., 2000. Cdpks - a kinase for every ca2+ signal? Trends Plant Sci 5 (4), 154-9. Harper, J.F., Breton, G., Harmon, A., 2004. Decoding ca(2+) signals through plant protein kinases. Annu Rev Plant Biol 55, 263-88. Harper, J.F., Sussman, M.R., Schaller, G.E., Putnam-Evans, C., Charbonneau, H., Harmon, A.C., 1991. A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science 252 (5008), 951-4. Hepler, P.K., 1997. Tip growth in pollen tubes: Calcium leads the way. Trends Plant Sci 2, 79-80. Heslopharrison, J., And Heslopharrison, Y., 1989. Conformation and movement of the vegetative nucleus of the angiosperm pollen-tube - association with the actin cytoskeleton. J Cell Sci 93, 299-308. Hrabak, E.M., Chan, C.W., Gribskov, M., Harper, J.F., Choi, J.H., Halford, N., Kudla, J., Luan, S., Nimmo, H.G., Sussman, M.R., Thomas, M., Walker-Simmons, K., Zhu, J.K., Harmon, A.C., 2003. The arabidopsis cdpk-snrk superfamily of protein kinases. Plant Physiol 132 (2), 666-80. Hwang, I., Sze, H., Harper, J.F., 2000. A calcium-dependent protein kinase can inhibit a calmodulin-stimulated ca2+ pump (aca2) located in the endoplasmic reticulum of arabidopsis. Proc Natl Acad Sci U S A 97 (11), 6224-9. Ishiguro, S., Kawai-Oda, A., Ueda, J., Nishida, I., Okada, K., 2001. The defective in anther dehiscience gene encodes a novel phospholipase a1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in arabidopsis. Plant Cell 13 (10), 2191-209. Ito, T., Nakata, M., Fukazawa, J., Ishida, S., Takahashi, Y., 2010. Alteration of substrate specificity: The variable n-terminal domain of tobacco ca(2+)-dependent protein kinase is important for substrate recognition. Plant Cell 22 (5), 1592-604. Iwakawa, H., Shinmyo, A., Sekine, M., 2006. Arabidopsis cdka;1, a cdc2 homologue, controls proliferation of generative cells in male gametogenesis. Plant J 45 (5), 819-31. Johnson, S.A., Mccormick, S., 2001. Pollen germinates precociously in the anthers of raring-to-go, an arabidopsis gametophytic mutant. Plant Physiol 126 (2), 685-95. Kanemaki, M., Kurokawa, Y., Matsu-Ura, T., Makino, Y., Masani, A., Okazaki, K., Morishita, T., Tamura, T.A., 1999. Tip49b, a new ruvb-like DNA helicase, is included in a complex together with another ruvb-like DNA helicase, tip49a. J Biol Chem 274 (32), 22437-44. Kawasaki, T., Hayashida, N., Baba, T., Shinozaki, K., Shimada, H., 1993. The gene encoding a calcium-dependent protein kinase located near the sbe1 gene encoding starch branching enzyme i is specifically expressed in developing rice seeds. Gene 129 (2), 183-9. Kost, B., Lemichez, E., Spielhofer, P., Hong, Y., Tolias, K., Carpenter, C., Chua, N.H., 1999. Rac homologues and compartmentalized phosphatidylinositol 4, 5-bisphosphate act in a common pathway to regulate polar pollen tube growth. J Cell Biol 145 (2), 317-30. Lalanne, E., Twell, D., 2002. Genetic control of male germ unit organization in arabidopsis. Plant Physiol 129 (2), 865-75. Lee, L.Y., Wu, F.H., Hsu, C.T., Shen, S.C., Yeh, H.Y., Liao, D.C., Fang, M.J., Liu, N.T., Yen, Y.C., Dokladal, L., Sykorova, E., Gelvin, S.B., Lin, C.S., 2012. Screening a cdna library for protein-protein interactions directly in planta. Plant Cell 24 (5), 1746-59. Lee, Y.J., Szumlanski, A., Nielsen, E., Yang, Z., 2008. Rho-gtpase-dependent filamentous actin dynamics coordinate vesicle targeting and exocytosis during tip growth. J Cell Biol 181 (7), 1155-68. Li, H., Lin, Y., Heath, R.M., Zhu, M.X., Yang, Z., 1999. Control of pollen tube tip growth by a rop gtpase-dependent pathway that leads to tip-localized calcium influx. Plant Cell 11 (9), 1731-42. Li, N., Zhang, D.S., Liu, H.S., Yin, C.S., Li, X.X., Liang, W.Q., Yuan, Z., Xu, B., Chu, H.W., Wang, J., Wen, T.Q., Huang, H., Luo, D., Ma, H., Zhang, D.B., 2006. The rice tapetum degeneration retardation gene is required for tapetum degradation and anther development. Plant Cell 18 (11), 2999-3014. Li, Y.Q., Zhang, H. Q., Pierso, E. S., Huang, H. F., Hepler, P. K., and Cresti, M., 1996. Enforced growth-rate fluctuatuion causes pectin ring formation in the cell wall of lilium longiflorum pollen tubes. . Planta 200, 41-49. Lin, Y., Yang, Z., 1997. Inhibition of pollen tube elongation by microinjected anti-rop1ps antibodies suggests a crucial role for rho-type gtpases in the control of tip growth. Plant Cell 9 (9), 1647-1659. Lovy-Wheeler, A., Wilsen, K.L., Baskin, T.I., Hepler, P.K., 2005. Enhanced fixation reveals the apical cortical fringe of actin filaments as a consistent feature of the pollen tube. Planta 221 (1), 95-104. Malho, R., Trewavas, A.J., 1996. Localized apical increases of cytosolic free calcium control pollen tube orientation. Plant Cell 8 (11), 1935-1949. Malho R., R., N. D., Pais, M, and Trewavas, A.J. , 1994. Role of cytosolic calcium in the reorientation of pollen tube growth. plant Journal 5, 331-341. Matsui, T., Omasa, K., and Horie, T., 1999. Mechanism of anther dehiscence in rice (oryza sativa l.). Ann Bot 84, 501-506. Mccormick, S., 1993. Male gametophyte development. Plant Cell 5 (10), 1265-1275. Mccormick, S., 2004. Control of male gametophyte development. Plant Cell 16 Suppl, S142-53. Mccubbin, A.G., Ritchie, S.M., Swanson, S.J., Gilroy, S., 2004. The calcium-dependent protein kinase hvcdpk1 mediates the gibberellic acid response of the barley aleurone through regulation of vacuolar function. Plant J 39 (2), 206-18. Mclean, J.R., Kouranti, I., Gould, K.L., 2011. Survey of the phosphorylation status of the schizosaccharomyces pombe deubiquitinating enzyme (dub) family. J Proteome Res 10 (3), 1208-15. Messerli, M., Robinson, K.R., 1997. Tip localized ca2+ pulses are coincident with peak pulsatile growth rates in pollen tubes of lilium longiflorum. J Cell Sci 110 ( Pt 11), 1269-78. Myers, C., Romanowsky, S.M., Barron, Y.D., Garg, S., Azuse, C.L., Curran, A., Davis, R.M., Hatton, J., Harmon, A.C., Harper, J.F., 2009. Calcium-dependent protein kinases regulate polarized tip growth in pollen tubes. Plant J 59 (4), 528-39. Neuwald, A.F., 1999. The hexamerization domain of n-ethylmaleimide-sensitive factor: Structural clues to chaperone function. Structure 7 (2), R19-23. Niewiadomski, P., Knappe, S., Geimer, S., Fischer, K., Schulz, B., Unte, U.S., Rosso, M.G., Ache, P., Flugge, U.I., Schneider, A., 2005. The arabidopsis plastidic glucose 6-phosphate/phosphate translocator gpt1 is essential for pollen maturation and embryo sac development. Plant Cell 17 (3), 760-75. Nonomura, K., Morohoshi, A., Nakano, M., Eiguchi, M., Miyao, A., Hirochika, H., Kurata, N., 2007. A germ cell specific gene of the argonaute family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19 (8), 2583-94. Nuhse, T.S., Bottrill, A.R., Jones, A.M., Peck, S.C., 2007. Quantitative phosphoproteomic analysis of plasma membrane proteins reveals regulatory mechanisms of plant innate immune responses. Plant J 51 (5), 931-40. Nuhse, T.S., Stensballe, A., Jensen, O.N., Peck, S.C., 2003. Large-scale analysis of in vivo phosphorylated membrane proteins by immobilized metal ion affinity chromatography and mass spectrometry. Mol Cell Proteomics 2 (11), 1234-43. Nuhse, T.S., Stensballe, A., Jensen, O.N., Peck, S.C., 2004. Phosphoproteomics of the arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16 (9), 2394-405. Ogura, T., Wilkinson, A.J., 2001. Aaa+ superfamily atpases: Common structure--diverse function. Genes Cells 6 (7), 575-97. Patharkar, O.R., Cushman, J.C., 2000. A stress-induced calcium-dependent protein kinase from mesembryanthemum crystallinum phosphorylates a two-component pseudo-response regulator. Plant J 24 (5), 679-91. Patharkar, O.R., Cushman, J.C., 2006. A novel coiled-coil protein co-localizes and interacts with a calcium-dependent protein kinase in the common ice plant during low-humidity stress. Planta 225 (1), 57-73. Pierson, E.S., Miller, D.D., Callaham, D.A., Shipley, A.M., Rivers, B.A., Cresti, M., Hepler, P.K., 1994. Pollen tube growth is coupled to the extracellular calcium ion flux and the intracellular calcium gradient: Effect of bapta-type buffers and hypertonic media. Plant Cell 6 (12), 1815-28. Qiu, H., Hsu, C.T., 1998. Minimum deviation of spatial frequency in large-particle sizing. Appl Opt 37 (28), 6787-94. Raghavan, V., 1988. Anther and pollen development in rice (oryza sativa). American Journal of Botany 75 (2), 183-196. Rathore, K.S., Cork, R.J., Robinson, K.R., 1991. A cytoplasmic gradient of ca2+ is correlated with the growth of lily pollen tubes. Dev Biol 148 (2), 612-9. Rodriguez Milla, M.A., Uno, Y., Chang, I.F., Townsend, J., Maher, E.A., Quilici, D., Cushman, J.C., 2006. A novel yeast two-hybrid approach to identify cdpk substrates: Characterization of the interaction between atcpk11 and atdi19, a nuclear zinc finger protein. FEBS Lett 580 (3), 904-11. Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., Izui, K., 2000. Over-expression of a single ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23 (3), 319-27. Sanders, D., Brownlee, C., Harper, J.F., 1999. Communicating with calcium. Plant Cell 11 (4), 691-706. Steer, M.W., And Steer, J. M. , 1989. Pollen tube tip growth. . New Phytol. 111, 323-358. Stintzi, A., Browse, J., 2000. The arabidopsis male-sterile mutant, opr3, lacks the 12-oxophytodienoic acid reductase required for jasmonate synthesis. Proc Natl Acad Sci U S A 97 (19), 10625-30. Tao, J., Zhang, L., Chong, K., Wang, T., 2007. Osrad21-3, an orthologue of yeast rad21, is required for pollen development in oryza sativa. Plant J 51 (5), 919-30. Twell, D., Park, S. K. And Lalanne, E. , 1998. Asymetric division and cell-fate determination in developing pollen. . Trends Plant Sci 3, 305-310. Uno, Y., Rodriguez Milla, M.A., Maher, E., Cushman, J.C., 2009. Identification of proteins that interact with catalytically active calcium-dependent protein kinases from arabidopsis. Mol Genet Genomics 281 (4), 375-90. Vidali, L., Mckenna, S.T., Hepler, P.K., 2001. Actin polymerization is essential for pollen tube growth. Mol Biol Cell 12 (8), 2534-45. Wang, C.W., Chen, W.C., Lin, L.J., Lee, C.T., Tseng, T.H., Leu, W.M., 2011. Oip30, a ruvb-like DNA helicase 2, is a potential substrate for the pollen-predominant oscpk25/26 in rice. Plant Cell Physiol 52 (9), 1641-56. Woo, M.O., Ham, T.H., Ji, H.S., Choi, M.S., Jiang, W., Chu, S.H., Piao, R., Chin, J.H., Kim, J.A., Park, B.S., Seo, H.S., Jwa, N.S., Mccouch, S., Koh, H.J., 2008. Inactivation of the ugpase1 gene causes genic male sterility and endosperm chalkiness in rice (oryza sativa l.). Plant J 54 (2), 190-204. Wu, H.M., Cheun, A.Y., 2000. Programmed cell death in plant reproduction. Plant Mol Biol 44 (3), 267-81. Yalovsky, S., Rodr Guez-Concepcion, M., Gruissem, W., 1999. Lipid modifications of proteins - slipping in and out of membranes. Trends Plant Sci 4 (11), 439-445. Yoon, G.M., Dowd, P.E., Gilroy, S., Mccubbin, A.G., 2006. Calcium-dependent protein kinase isoforms in petunia have distinct functions in pollen tube growth, including regulating polarity. Plant Cell 18 (4), 867-78. Zhang, D.S., Liang, W.Q., Yuan, Z., Li, N., Shi, J., Wang, J., Liu, Y.M., Yu, W.J., Zhang, D.B., 2008. Tapetum degeneration retardation is critical for aliphatic metabolism and gene regulation during rice pollen development. Mol Plant 1 (4), 599-610. Zheng, Z.L., Yang, Z., 2000. The rop gtpase: An emerging signaling switch in plants. Plant Mol Biol 44 (1), 1-9. Zhou, L., Fu, Y., Yang, Z., 2009. A genome-wide functional characterization of arabidopsis regulatory calcium sensors in pollen tubes. J Integr Plant Biol 51 (8), 751-61. Zuo, L., Li, S., Chu, M., Wang, S., Deng, Q., Ding, L., Zhang, J., Wen, Y., Zheng, A., and Li, P., 2008. Phenotypic characterization, genetic analysis, and molecular mapping of a new mutant gene for male sterility in rice. Genome 51, 303-308.
摘要: 水稻有29個OsCPK (Oryza sativa Calcium-dependent Protein Kinase )基因成員,其中有七個專一表現於花粉,但目前對此七個OsCPK的受質研究甚少,至今僅知其中的OsCPK26與其受質蛋白OIP30 (OsCPK26-interaction protein 30,為一RuvB-like DNA 解旋酶)皆主要表現在成熟花粉中,據此判斷兩者可能影響花粉後期發育或花粉管萌發,故以轉殖植物策略進行其功能性分析。由於大量表現不具活性的OsCPK26(CI) (catalytically inactive)突變型蛋白之轉殖水稻有雄不稔現象,推估是OsCPK26(CI)牽絆住其受質OIP30所造成。對此假說,設計以大量表現OIP30試圖挽救上述雄不稔情況,但並未能證明上述假說。另外,先前研究亦發現,大量表現OsCPK26(WT)野生型蛋白之轉殖植株也有雄不稔現象;相反地,大量表現OsCPK26(G2A) (肉豆蔻酸化訊號突變,導致OsCPK26蛋白無法附著於胞膜)的轉殖植株稔實卻正常,由此推測雄不稔可能與OsCPK26以肉豆蔻酸基附著於胞膜的現象相關。 水稻在花粉表現的七個OsCPK蛋白可因相似度而分為兩型,兩型之間蛋白彼此序列相似度為58% 而非同型內的70%,兩型中表現量較高的分別為第一型的OsCPK2和第二型的OsCPK29,為了解兩型OsCPK蛋白之功能,分別以E. coli.大量表現融合(His)6標籤序列之OsCPK2和OsCPK29後,利用親和性管柱Ni-NTA抓取可與OsCPK結合之水稻花粉蛋白,而為了避免OsCPK磷酸化後快速釋放受質,則以腺酸水解酶(apyrase)預先去除花粉的內生性ATP,再使用ATP洗提吸附於管柱中的蛋白,接著進行SDS-PAGE依照蛋白分子量分群後,使用LC-MS/MS分析,配合水稻基因組資料庫搜查,並扣除在控制組管柱也出現的蛋白,嘗試分離與OsCPK具有交互作用的蛋白,最後希望得知這些蛋白質的表現情況、與OsCPK的親和性或被磷酸化機制等特性後,鑑定其是否為OsCPK之受質蛋白,再進一步釐清兩型OsCPK蛋白在水稻花粉中的功能。
Thirty one members of OsCPK (Oryza sativa Calcium-dependent Protein Kinase ) genes are found in rice, and seven of them are expressed predominantly in pollen. However, almost no reports were focus on substrates of those 7 OsCPKs. Only a RuvB-like DNA helicase, named as OIP30 (OsCPK26-interaction protein 30), had been demonstrated to be expressed predominantly in the mature pollen grain and be the substrate for OsCPK26. To analyze their roles in pollen development and/or pollen tube germination, transgenic studies were employed. As OsCPK26(CI) (catalytically inactive) overexpressing rice was found to be male-sterile, we hypothesized that the overwhelmed OsCPK26(CI) may trap OIP30 without phosphorylation and that, co-overexpression of OIP30 may be able relieve such an effect. However, no rescued phenotype could be detected thus far. On the other hand, OsCPK26(WT) (wild type) overexpressing rice also cause male-sterile, opposed to the OsCPK26(G2A) (myristoylation mutant) transgenic rice. We suspect that the myristoylated membrane-bound OsCPK26 may disturb pollen function via unknown mechanism. According to protein sequence similarity, the seven pollen-expressed OsCPKs can be grouped into two types, sharing 70% similarity within group but 58% between groups, and thus may play different roles in pollen. OsCPK2 (type I) and OsCPK29 (type II), both with relatively high expressions in pollen, were chosen for study. To isolate their downstream substrates from pollen, an affinity-purification strategy was employed. His-tagged OsCPK2 or OsCPK29 were expressed by E. coli, bound by Ni-NTA resin, and used to trap their interacting proteins from fresh rice pollen. To avoid substrate release after catalysis by OsCPKs, endogenous ATP within pollen extracts was depleted by apyrase treatment and the resin-bound proteins were eluted by ATP. The eluents were then fractionated by SDS-PAGE and identified by LC-MS/MS. The identified rice pollen proteins, if absent in control resin, will be further characterized regarding their expression profiles, affinities with OsCPKs, protein characteristics, and phosphorylations conferred by OsCPKs, etc., so to investigate the specific roles of each types of OsCPKs in rice pollen.
URI: http://hdl.handle.net/11455/35833
其他識別: U0005-1708201219194900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1708201219194900
Appears in Collections:生物科技學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.