Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35839
標題: 榖類種子糊粉層細胞離層酸信息傳導之新解析
New insights into ABA signaling pathways in cereal aleurone cells
作者: 黃冠穎
Huang, Kuan-Ying
關鍵字: 榖類
ABA
離層酸
FCA
CHLH
信息
FCA
signaling
CHLH
SAPK
出版社: 生物科技學研究所
引用: Allan, A.C., Fricker, M.D., Ward, J.L., Beale, M.H., and Trewavas, A.J. (1994). Two Transduction Pathways Mediate Rapid Effects of Abscisic Acid in Commelina Guard Cells. Plant Cell 6, 1319-1328. Anderson, B.E., Ward, J.M., and Schroeder, J.I. (1994). Evidence for an Extracellular Reception Site for Abscisic Acid in Commelina Guard Cells. Plant Physiol 104, 1177-1183. Andre, S., Siebert, H.C., Nishiguchi, M., Tazaki, K., and Gabius, H.J. (2005). Evidence for lectin activity of a plant receptor-like protein kinase by application of neoglycoproteins and bioinformatic algorithms. Biochim Biophys Acta 1725, 222-232. Armstrong, F., Leung, J., Grabov, A., Brearley, J., Giraudat, J., and Blatt, M.R. (1995). Sensitivity to abscisic acid of guard-cell K+ channels is suppressed by abi1-1, a mutant Arabidopsis gene encoding a putative protein phosphatase. Proc Natl Acad Sci U S A 92, 9520-9524. Baurle, I., Smith, L., Baulcombe, D.C., and Dean, C. (2007). Widespread role for the flowering-time regulators FCA and FPA in RNA-mediated chromatin silencing. Science (New York, N.Y 318, 109-112. Bewley, J.D., and Black, M. (1985). Seeds: Physiology of Development and Germination. (New York: Plenum Press). Busk, P.K., and Pages, M. (1998). Regulation of abscisic acid-induced transcription. Plant Mol Biol 37, 425-435. Casaretto, J., and Ho, T.H. (2003). The transcription factors HvABI5 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells. Plant Cell 15, 271-284. Chan, K.X., Crisp, P.A., Estavillo, G.M., and Pogson, B.J. (2010). Chloroplast-to-nucleus communication: current knowledge, experimental strategies and relationship to drought stress signaling. Plant signaling & behavior 5, 1575-1582. Chang, C.S., Li, Y.H., Chen, L.T., Chen, W.C., Hsieh, W.P., Shin, J., Jane, W.N., Chou, S.J., Choi, G., Hu, J.M., Somerville, S., and Wu, S.H. (2008). LZF1, a HY5-regulated transcriptional factor, functions in Arabidopsis de-etiolation. Plant J 54, 205-219. Chang, S., Puryear, J., and Cairney, J. (1993). A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Reporter 11, 113-116. Chen, J.G. (2008). Heterotrimeric G-proteins in plant development. Front Biosci 13, 3321-3333. Chen, P.W., Lu, C.A., Yu, T.S., Tseng, T.H., Wang, C.S., and Yu, S.M. (2002). Rice alpha-amylase transcriptional enhancers direct multiple mode regulation of promoters in transgenic rice. The Journal of biological chemistry 277, 13641-13649. Cheng, W.H., Endo, A., Zhou, L., Penney, J., Chen, H.C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., Koshiba, T., and Sheen, J. (2002). A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14, 2723-2743. Choi, H., Hong, J., Ha, J., Kang, J., and Kim, S.Y. (2000). ABFs, a family of ABA-responsive element binding factors. The Journal of biological chemistry 275, 1723-1730. Cornish, K., and Zeevaart, J.A. (1988). Phenotypic expression of wild-type tomato and three wilty mutants in relation to abscisic Acid accumulation in roots and leaflets of reciprocal grafts. Plant Physiol 87, 190-194. Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., and Abrams, S.R. (2010). Abscisic acid: emergence of a core signaling network. Annual review of plant biology 61, 651-679. Das, R., and Pandey, G.K. (2010). Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Curr Genomics 11, 2-13. Diedhiou, C.J., Popova, O.V., Dietz, K.J., and Golldack, D. (2008). The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC plant biology 8, 49. Domagalska, M.A., Sarnowska, E., Nagy, F., and Davis, S.J. (2010). Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana. PloS one 5, e14012. Eckardt, N.A. (2002). Alternative splicing and the control of flowering time. Plant Cell 14, 743-747. Ehlert, A., Weltmeier, F., Wang, X., Mayer, C.S., Smeekens, S., Vicente-Carbajosa, J., and Droge-Laser, W. (2006). Two-hybrid protein-protein interaction analysis in Arabidopsis protoplasts: establishment of a heterodimerization map of group C and group S bZIP transcription factors. Plant J 46, 890-900. Finkelstein, R.R., and Lynch, T.J. (2000). The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12, 599-609. Finkelstein, R.R., Wang, M.L., Lynch, T.J., Rao, S., and Goodman, H.M. (1998). The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10, 1043-1054. Fujita, Y., Fujita, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. Journal of plant research 124, 509-525. Gampala, S.S., Finkelstein, R.R., Sun, S.S., and Rock, C.D. (2002). ABI5 interacts with abscisic acid signaling effectors in rice protoplasts. The Journal of biological chemistry 277, 1689-1694. Gomez-Cadenas, A., Zentella, R., Walker-Simmons, M.K., and Ho, T.H. (2001). Gibberellin/abscisic acid antagonism in barley aleurone cells: site of action of the protein kinase PKABA1 in relation to gibberellin signaling molecules. Plant Cell 13, 667-679. Gomez-Cadenas, A., Verhey, S.D., Holappa, L.D., Shen, Q., Ho, T.H., and Walker-Simmons, M.K. (1999). An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. Proc Natl Acad Sci U S A 96, 1767-1772. Gomez-Porras, J.L., Riano-Pachon, D.M., Dreyer, I., Mayer, J.E., and Mueller-Roeber, B. (2007). Genome-wide analysis of ABA-responsive elements ABRE and CE3 reveals divergent patterns in Arabidopsis and rice. BMC Genomics 8, 260. Gonzalez-Guzman, M., Apostolova, N., Belles, J.M., Barrero, J.M., Piqueras, P., Ponce, M.R., Micol, J.L., Serrano, R., and Rodriguez, P.L. (2002). The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14, 1833-1846. Gosti, F., Beaudoin, N., Serizet, C., Webb, A.A., Vartanian, N., and Giraudat, J. (1999). ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11, 1897-1910. Guo, J., Yang, X., Weston, D.J., and Chen, J.G. (2011). Abscisic acid receptors: past, present and future. Journal of integrative plant biology 53, 469-479. Guo, J., Zeng, Q., Emami, M., Ellis, B.E., and Chen, J.G. (2008). The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis. PloS one 3, e2982. Hand, S.C., Menze, M.A., Toner, M., Boswell, L., and Moore, D. (2011). LEA proteins during water stress: not just for plants anymore. Annu Rev Physiol 73, 115-134. Hattori, T., Totsuka, M., Hobo, T., Kagaya, Y., and Yamamoto-Toyoda, A. (2002). Experimentally determined sequence requirement of ACGT-containing abscisic acid response element. Plant Cell Physiol 43, 136-140. Henderson, I.R., and Dean, C. (2004). Control of Arabidopsis flowering: the chill before the bloom. Development 131, 3829-3838. Hobo, T., Asada, M., Kowyama, Y., and Hattori, T. (1999). ACGT-containing abscisic acid response element (ABRE) and coupling element 3 (CE3) are functionally equivalent. Plant J 19, 679-689. Hong, S.W., Jon, J.H., Kwak, J.M., and Nam, H.G. (1997). Identification of a receptor-like protein kinase gene rapidly induced by abscisic acid, dehydration, high salt, and cold treatments in Arabidopsis thaliana. Plant Physiol 113, 1203-1212. Hoth, S., Morgante, M., Sanchez, J.P., Hanafey, M.K., Tingey, S.V., and Chua, N.H. (2002). Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. Journal of cell science 115, 4891-4900. Huang, G.T., Ma, S.L., Bai, L.P., Zhang, L., Ma, H., Jia, P., Liu, J., Zhong, M., and Guo, Z.F. (2012). Signal transduction during cold, salt, and drought stresses in plants. Mol Biol Rep 39, 969-987. Illingworth, C.J., Parkes, K.E., Snell, C.R., Mullineaux, P.M., and Reynolds, C.A. (2008). Criteria for confirming sequence periodicity identified by Fourier transform analysis: application to GCR2, a candidate plant GPCR? Biophys Chem 133, 28-35. Jammes, F., Song, C., Shin, D., Munemasa, S., Takeda, K., Gu, D., Cho, D., Lee, S., Giordo, R., Sritubtim, S., Leonhardt, N., Ellis, B.E., Murata, Y., and Kwak, J.M. (2009). MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci U S A 106, 20520-20525. Jang, Y.H., Park, H.Y., Kim, S.K., Lee, J.H., Suh, M.C., Chung, Y.S., Paek, K.H., and Kim, J.K. (2009). Survey of rice proteins interacting with OsFCA and OsFY proteins which are homologous to the Arabidopsis flowering time proteins, FCA and FY. Plant Cell Physiol 50, 1479-1492. Jiang, S., Kumar, S., Eu, Y.J., Jami, S.K., Stasolla, C., and Hill, R.D. (2012). The Arabidopsis mutant, fy-1, has an ABA-insensitive germination phenotype. J Exp Bot 63, 2693-2703. Jiang, W., and Yu, D. (2009). Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC plant biology 9, 96. Jinn, T.L., Chiu, C.C., Song, W.W., Chen, Y.M., and Lin, C.Y. (2004). Azetidine-induced accumulation of class I small heat shock proteins in the soluble fraction provides thermotolerance in soybean seedlings. Plant Cell Physiol 45, 1759-1767. Johnson, R.R., Shin, M., and Shen, J.Q. (2008). The wheat PKABA1-interacting factor TaABF1 mediates both abscisic acid-suppressed and abscisic acid-induced gene expression in bombarded aleurone cells. Plant Mol Biol 68, 93-103. Kannangara, C.G., Vothknecht, U.C., Hansson, M., and von Wettstein, D. (1997). Magnesium chelatase: association with ribosomes and mutant complementation studies identify barley subunit Xantha-G as a functional counterpart of Rhodobacter subunit BchD. Mol Gen Genet 254, 85-92. Kim, H., Hwang, H., Hong, J.W., Lee, Y.N., Ahn, I.P., Yoon, I.S., Yoo, S.D., Lee, S., Lee, S.C., and Kim, B.G. (2012). A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J Exp Bot 63, 1013-1024. Kim, T.H., Bohmer, M., Hu, H., Nishimura, N., and Schroeder, J.I. (2010). Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual review of plant biology 61, 561-591. Kobayashi, Y., Yamamoto, S., Minami, H., Kagaya, Y., and Hattori, T. (2004). Differential activation of the rice sucrose nonfermenting1-related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16, 1163-1177. Kobayashi, Y., Murata, M., Minami, H., Yamamoto, S., Kagaya, Y., Hobo, T., Yamamoto, A., and Hattori, T. (2005). Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element-binding factors. Plant J 44, 939-949. Koornneef, M., Bentsink, L., and Hilhorst, H. (2002). Seed dormancy and germination. Current opinion in plant biology 5, 33-36. Krochko, J.E., and Cutler, A.J. (2011). In vitro assay for ABA 8''-hydroxylase: implications for improved assays for cytochrome P450 enzymes. Methods Mol Biol 773, 113-134. Kulik, A., Wawer, I., Krzywinska, E., Bucholc, M., and Dobrowolska, G. (2011). SnRK2 protein kinases--key regulators of plant response to abiotic stresses. OMICS 15, 859-872. Lanahan, M.B., Ho, T.H., Rogers, S.W., and Rogers, J.C. (1992). A gibberellin response complex in cereal alpha-amylase gene promoters. Plant Cell 4, 203-211. Lapik, Y.R., and Kaufman, L.S. (2003). The Arabidopsis cupin domain protein AtPirin1 interacts with the G protein alpha-subunit GPA1 and regulates seed germination and early seedling development. Plant Cell 15, 1578-1590. Leung, J., Merlot, S., and Giraudat, J. (1997). The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9, 759-771. Li, G., Lin, F., and Xue, H.W. (2007). Genome-wide analysis of the phospholipase D family in Oryza sativa and functional characterization of PLD beta 1 in seed germination. Cell research 17, 881-894. Li, P.L., Ma, Y.Y., Li, X.P., Zhang, L.W., Wang, Y., and Wang, N.N. (2006). [Cloning and preliminary analysis of promoter of soybean receptor-like protein kinase gene rlpk2]. Zhi wu sheng li yu fen zi sheng wu xue xue bao = Journal of plant physiology and molecular biology 32, 315-319. Linkies, A., and Leubner-Metzger, G. (2012). Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Rep 31, 253-270. Liu, X., Yue, Y., Li, B., Nie, Y., Li, W., Wu, W.H., and Ma, L. (2007). A G protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science (New York, N.Y 315, 1712-1716. Lu, C.A., Ho, T.H., Ho, S.L., and Yu, S.M. (2002). Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of alpha-amylase gene expression. Plant Cell 14, 1963-1980. Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., and Grill, E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science (New York, N.Y 324, 1064-1068. Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G., Sherson, S., Cobbett, C., and Dean, C. (1997). FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domains. Cell 89, 737-745. Mare, C., Mazzucotelli, E., Crosatti, C., Francia, E., Stanca, A.M., and Cattivelli, L. (2004). Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Mol Biol 55, 399-416. Marella, H.H., and Quatrano, R.S. (2007). The B2 domain of VIVIPAROUS1 is bi-functional and regulates nuclear localization and transactivation. Planta 225, 863-872. McCarty, D.R., Hattori, T., Carson, C.B., Vasil, V., Lazar, M., and Vasil, I.K. (1991). The Viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66, 895-905. Miki, D., and Shimamoto, K. (2004). Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45, 490-495. Mishra, G., Zhang, W., Deng, F., Zhao, J., and Wang, X. (2006). A bifurcating pathway directs abscisic acid effects on stomatal closure and opening in Arabidopsis. Science (New York, N.Y 312, 264-266. Miura, K., and Hasegawa, P.M. (2009). Sumoylation and abscisic acid signaling. Plant signaling & behavior 4, 1176-1178. Mizuno, S., Osakabe, Y., Maruyama, K., Ito, T., Osakabe, K., Sato, T., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Receptor-like protein kinase 2 (RPK 2) is a novel factor controlling anther development in Arabidopsis thaliana. Plant J 50, 751-766. Mori, I.C., and Murata, Y. (2011). ABA signaling in stomatal guard cells: lessons from Commelina and Vicia. Journal of plant research 124, 477-487. Mori, I.C., Murata, Y., Yang, Y., Munemasa, S., Wang, Y.F., Andreoli, S., Tiriac, H., Alonso, J.M., Harper, J.F., Ecker, J.R., Kwak, J.M., and Schroeder, J.I. (2006). CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca(2+)-permeable channels and stomatal closure. PLoS biology 4, e327. Nakamura, S., Lynch, T.J., and Finkelstein, R.R. (2001). Physical interactions between ABA response loci of Arabidopsis. Plant J 26, 627-635. Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., Maruyama, K., Yoshida, T., Ishiyama, K., Kobayashi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2009). Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50, 1345-1363. Nishimura, N., Sarkeshik, A., Nito, K., Park, S.Y., Wang, A., Carvalho, P.C., Lee, S., Caddell, D.F., Cutler, S.R., Chory, J., Yates, J.R., and Schroeder, J.I. (2009). PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J. Niu, X., Helentjaris, T., and Bate, N.J. (2002). Maize ABI4 binds coupling element1 in abscisic acid and sugar response genes. Plant Cell 14, 2565-2575. Nodine, M.D., Yadegari, R., and Tax, F.E. (2007). RPK1 and TOAD2 are two receptor-like kinases redundantly required for arabidopsis embryonic pattern formation. Developmental cell 12, 943-956. Osakabe, Y., Maruyama, K., Seki, M., Satou, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2005). Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17, 1105-1119. Osakabe, Y., Mizuno, S., Tanaka, H., Maruyama, K., Osakabe, K., Todaka, D., Fujita, Y., Kobayashi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2010). Overproduction of the membrane-bound receptor-like protein kinase 1, RPK1, enhances abiotic stress tolerance in Arabidopsis. The Journal of biological chemistry 285, 9190-9201. Pandey, S., Nelson, D.C., and Assmann, S.M. (2009). Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136, 136-148. Pandey, S., Chen, J.G., Jones, A.M., and Assmann, S.M. (2006). G-protein complex mutants are hypersensitive to abscisic acid regulation of germination and postgermination development. Plant Physiol 141, 243-256. Papenbrock, J., and Grimm, B. (2001). Regulatory network of tetrapyrrole biosynthesis--studies of intracellular signalling involved in metabolic and developmental control of plastids. Planta 213, 667-681. Peng, Y., Zhang, J., Cao, G., Xie, Y., Liu, X., Lu, M., and Wang, G. (2010). Overexpression of a PLDalpha1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance. Plant Cell Rep 29, 793-802. Piskurewicz, U., Jikumaru, Y., Kinoshita, N., Nambara, E., Kamiya, Y., and Lopez-Molina, L. (2008). The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20, 2729-2745. Quesada, V., Macknight, R., Dean, C., and Simpson, G.G. (2003). Autoregulation of FCA pre-mRNA processing controls Arabidopsis flowering time. EMBO J 22, 3142-3152. Rajjou, L., Duval, M., Gallardo, K., Catusse, J., Bally, J., Job, C., and Job, D. (2012). Seed germination and vigor. Annu Rev Plant Biol 63, 507-533. Razem, F.A., El-Kereamy, A., Abrams, S.R., and Hill, R.D. (2006). The RNA-binding protein FCA is an abscisic acid receptor. Nature 439, 290-294. Razem, F.A., El-Kereamy, A., Abrams, S.R., and Hill, R.D. (2008). Retraction. The RNA-binding protein FCA is an abscisic acid receptor. Nature 456, 824. Razem, F.A., Luo, M., Liu, J.H., Abrams, S.R., and Hill, R.D. (2004). Purification and characterization of a barley aleurone abscisic acid-binding protein. The Journal of biological chemistry 279, 9922-9929. Risk, J.M., Macknight, R.C., and Day, C.L. (2008). FCA does not bind abscisic acid. Nature 456, E5-6. Ritchie, S., and Gilroy, S. (1998). Gibberellins: regulating genes and germination. New Phytol. 140, 363-383. Rodermel, S., and Park, S. (2003). Pathways of intracellular communication: tetrapyrroles and plastid-to-nucleus signaling. Bioessays 25, 631-636. Rodriguez-Gacio Mdel, C., Matilla-Vazquez, M.A., and Matilla, A.J. (2009). Seed dormancy and ABA signaling: the breakthrough goes on. Plant signaling & behavior 4, 1035 - 1049. Rushton, D.L., Tripathi, P., Rabara, R.C., Lin, J., Ringler, P., Boken, A.K., Langum, T.J., Smidt, L., Boomsma, D.D., Emme, N.J., Chen, X., Finer, J.J., Shen, Q.J., and Rushton, P.J. (2012). WRKY transcription factors: key components in abscisic acid signalling. Plant biotechnology journal 10, 2-11. Saghai-Maroof, M.A., Soliman, K.M., Jorgensen, R.A., and Allard, R.W. (1984). Ribosomal DNA spacer-length polymorphisms in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci U S A 81, 8014-8018. Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., Park, S.Y., Marquez, J.A., Cutler, S.R., and Rodriguez, P.L. (2009). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60, 575-588. Sarnowski, T.J., Swiezewski, S., Pawlikowska, K., Kaczanowski, S., and Jerzmanowski, A. (2002). AtSWI3B, an Arabidopsis homolog of SWI3, a core subunit of yeast Swi/Snf chromatin remodeling complex, interacts with FCA, a regulator of flowering time. Nucleic Acids Res 30, 3412-3421. Schoonheim, P.J., Costa Pereira, D.D., and De Boer, A.H. (2009). Dual role for 14-3-3 proteins and ABF transcription factors in gibberellic acid and abscisic acid signalling in barley (Hordeum vulgare) aleurone cells. Plant, cell & environment 32, 439-447. Schroeder, J.I., and Hagiwara, S. (1990). Repetitive increases in cytosolic Ca2+ of guard cells by abscisic acid activation of nonselective Ca2+ permeable channels. Proc Natl Acad Sci U S A 87, 9305-9309. Schroeder, J.I., and Keller, B.U. (1992). Two types of anion channel currents in guard cells with distinct voltage regulation. Proc Natl Acad Sci U S A 89, 5025-5029. Schroeder, J.I., Hagiwara S. . (1989). Cytosolic calcium regulates ion channels in the plasma membrane of Vicia faba guard cells. Nature 338, 427-430. Schroeder, J.I., Hedrich, R & Fernandez, J M (1984). Potassium-selective single channels in guard cell protoplasts of Vicia faba. Nature 312, 361-362. Schwartz, S.H., Tan, B.C., Gage, D.A., Zeevaart, J.A., and McCarty, D.R. (1997). Specific oxidative cleavage of carotenoids by VP14 of maize. Science (New York, N.Y 276, 1872-1874. Seo, M., Aoki, H., Koiwai, H., Kamiya, Y., Nambara, E., and Koshiba, T. (2004). Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. Plant Cell Physiol 45, 1694-1703. Shang, Y., Yan, L., Liu, Z.Q., Cao, Z., Mei, C., Xin, Q., Wu, F.Q., Wang, X.F., Du, S.Y., Jiang, T., Zhang, X.F., Zhao, R., Sun, H.L., Liu, R., Yu, Y.T., and Zhang, D.P. (2010). The Mg-chelatase H subunit of Arabidopsis antagonizes a group of WRKY transcription repressors to relieve ABA-responsive genes of inhibition. Plant Cell 22, 1909-1935. Shen, Q., and Ho, T.H. (1995). Functional dissection of an abscisic acid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7, 295-307. Shen, Q., Uknes, S.J., and Ho, T.H. (1993). Hormone response complex in a novel abscisic acid and cycloheximide-inducible barley gene. The Journal of biological chemistry 268, 23652-23660. Shen, Y.Y., Wang, X.F., Wu, F.Q., Du, S.Y., Cao, Z., Shang, Y., Wang, X.L., Peng, C.C., Yu, X.C., Zhu, S.Y., Fan, R.C., Xu, Y.H., and Zhang, D.P. (2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443, 823-826. Shiu, S.H., and Bleecker, A.B. (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc Natl Acad Sci U S A 98, 10763-10768. Shkolnik-Inbar, D., and Bar-Zvi, D. (2010). ABI4 mediates abscisic acid and cytokinin inhibition of lateral root formation by reducing polar auxin transport in Arabidopsis. Plant Cell 22, 3560-3573. Simpson, G.G., Dijkwel, P.P., Quesada, V., Henderson, I., and Dean, C. (2003). FY is an RNA 3'' end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113, 777-787. Simpson, G.G., Quesada, V., Henderson, I.R., Dijkwel, P.P., Macknight, R., and Dean, C. (2004). RNA processing and Arabidopsis flowering time control. Biochemical Society transactions 32, 565-566. Sirichandra, C., Gu, D., Hu, H.C., Davanture, M., Lee, S., Djaoui, M., Valot, B., Zivy, M., Leung, J., Merlot, S., and Kwak, J.M. (2009). Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583, 2982-2986. Soon, F.F., Ng, L.M., Zhou, X.E., West, G.M., Kovach, A., Tan, M.H., Suino-Powell, K.M., He, Y., Xu, Y., Chalmers, M.J., Brunzelle, J.S., Zhang, H., Yang, H., Jiang, H., Li, J., Yong, E.L., Cutler, S., Zhu, J.K., Griffin, P.R., Melcher, K., and Xu, H.E. (2012). Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science (New York, N.Y 335, 85-88. Strand, A., Asami, T., Alonso, J., Ecker, J.R., and Chory, J. (2003). Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrinIX. Nature 421, 79-83. Sturla, L., Fresia, C., Guida, L., Grozio, A., Vigliarolo, T., Mannino, E., Millo, E., Bagnasco, L., Bruzzone, S., De Flora, A., and Zocchi, E. (2011). Binding of abscisic acid to human LANCL2. Biochemical and biophysical research communications 415, 390-395. Suzuki, M., Kao, C.Y., and McCarty, D.R. (1997). The conserved B3 domain of VIVIPAROUS1 has a cooperative DNA binding activity. Plant Cell 9, 799-807. Suzuki, M., Kao, C.Y., Cocciolone, S., and McCarty, D.R. (2001). Maize VP1 complements Arabidopsis abi3 and confers a novel ABA/auxin interaction in roots. Plant J 28, 409-418. Tsuzuki, T., Takahashi, K., Inoue, S., Okigaki, Y., Tomiyama, M., Hossain, M.A., Shimazaki, K., Murata, Y., and Kinoshita, T. (2011). Mg-chelatase H subunit affects ABA signaling in stomatal guard cells, but is not an ABA receptor in Arabidopsis thaliana. Journal of plant research 124, 527-538. Tuan-hua David Ho, A.G.-C., Rodolfo Zentella and Jose Casaretto. (2003). Crosstalk Between Gibberellin and Abscisic Acid in Cereal Aleurone. Journal of Plant Growth Regulation 22, 185-194. Tuteja, N. (2007). Abscisic Acid and abiotic stress signaling. Plant signaling & behavior 2, 135-138. Umezawa, T., Nakashima, K., Miyakawa, T., Kuromori, T., Tanokura, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2010). Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51, 1821-1839. Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., Ishihama, Y., Hirayama, T., and Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci U S A 106, 17588-17593. Weitbrecht, K., Muller, K., and Leubner-Metzger, G. (2011). First off the mark: early seed germination. J Exp Bot 62, 3289-3309. Wise, M.J., and Tunnacliffe, A. (2004). POPP the question: what do LEA proteins do? Trends Plant Sci 9, 13-17. Wu, F.Q., Xin, Q., Cao, Z., Liu, Z.Q., Du, S.Y., Mei, C., Zhao, C.X., Wang, X.F., Shang, Y., Jiang, T., Zhang, X.F., Yan, L., Zhao, R., Cui, Z.N., Liu, R., Sun, H.L., Yang, X.L., Su, Z., and Zhang, D.P. (2009). The magnesium-chelatase H subunit binds abscisic acid and functions in abscisic acid signaling: new evidence in Arabidopsis. Plant Physiol 150, 1940-1954. Xie, Z., Zhang, Z.L., Zou, X., Yang, G., Komatsu, S., and Shen, Q.J. (2006). Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. Plant J 46, 231-242. Xie, Z., Zhang, Z.L., Zou, X., Huang, J., Ruas, P., Thompson, D., and Shen, Q.J. (2005). Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiol 137, 176-189. Yamaguchi-Shinozaki, K., and Shinozaki, K. (2006). Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annual review of plant biology 57, 781-803. Yamauchi, D., Zentella, R., and Ho, T.H. (2002). Molecular analysis of the barley ( Hordeum vulgare L.) gene encoding the protein kinase PKABA1 capable of suppressing gibberellin action in aleurone layers. Planta 215, 319-326. Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F., and Shinozaki, K. (2006). The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. The Journal of biological chemistry 281, 5310-5318. Yoshida, T., Fujita, Y., Sayama, H., Kidokoro, S., Maruyama, K., Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2010). AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant J 61, 672-685. Zentella, R., Yamauchi, D., and Ho, T.H. (2002). Molecular dissection of the gibberellin/abscisic acid signaling pathways by transiently expressed RNA interference in barley aleurone cells. Plant Cell 14, 2289-2301. Zhang, W., Qin, C., Zhao, J., and Wang, X. (2004a). Phospholipase D alpha 1-derived phosphatidic acid interacts with ABI1 phosphatase 2C and regulates abscisic acid signaling. Proc Natl Acad Sci U S A 101, 9508-9513. Zhang, Z.L., Xie, Z., Zou, X., Casaretto, J., Ho, T.H., and Shen, Q.J. (2004b). A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiol 134, 1500-1513. Zhang, Z.L., Shin, M., Zou, X., Huang, J., Ho, T.H., and Shen, Q.J. (2009). A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signaling in aleurone cells. Plant Mol Biol 70, 139-151. Zhu, S.Y., Yu, X.C., Wang, X.J., Zhao, R., Li, Y., Fan, R.C., Shang, Y., Du, S.Y., Wang, X.F., Wu, F.Q., Xu, Y.H., Zhang, X.Y., and Zhang, D.P. (2007). Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 19, 3019-3036. Zou, X., Neuman, D., and Shen, Q.J. (2008). Interactions of two transcriptional repressors and two transcriptional activators in modulating gibberellin signaling in aleurone cells. Plant Physiol 148, 176-186.
摘要: The phytohormone, abscisic acid (ABA) regulates many aspects in plant development including seed formation, dormancy and germination. Several putative ABA receptors have been reported in recent years; however the validity of some of these reports has been seriously questioned. We have investigated the role of these proteins in cereal aleurone tissue where well-defined ABA responses can be analyzed with precision. These putative ABA receptors or regulatory proteins include FCA (flowering time control protein a), CHLH (H subunit of chloroplast Mg2+-chelatase), GTG (GPCR-Type G protein), and RPK (receptor-like protein kinase). All these genes were overexpressed or suppressed by RNAi in cereal aleurone cells to investigate their effects on hormone signaling in aleurone tissue consisting of a single cell type responsive to gibberellin (GA) and ABA. GFP fusion proteins of these regulators were also expressed to study their cellular localization. ABA induction of LEA (late embryogenesis abundant) protein genes was enhanced by over-expression of FCA, but significantly suppressed by FCA RNAi or CHLH RNAi. Simultaneous repression of the expression of all four regulatory proteins further blocked the ABA induction of LEA genes. However, the other two signaling pathways, i.e. GA induction and ABA suppression of α-amylase, were not affected by overexpression or repression of FCA, RPK, GTG or CHLH genes. Furthermore, the suppressive effect of GTG RNAi was partially overcome by overexpression of FCA, suggesting that this nucleus-localized regulator may work downstream from GTG. This independent pathway could be blocked by the mutant form of protein phosphatase 2C, ABI1, suggesting interplay between the PYR/PYL/RCAR receptor system and these regulators. The role of FCA has been more extensively investigated in the cereal aleurone cells because it was first isolated from this tissue. Following a multidisciplinary approach combining molecular genetics, biochemistry, cell biology, and physiology, we have obtained strong evidence to suggesting that FCA is an important enhancer in ABA signaling in cereal grain germination. Epistasis studies indicated that FCA works upstream from VP1/ABI5,which are important signaling molecules/transcription factors involved in ABA up-regulation of LEA protein expression. The FCA-GFP fusion protein is initially localized in the cytoplasm with a punctate pattern but then gradually translocated into the nucleus. This cytosol-to-nucleus translocation of FCA was further enhanced by ABA treatment. Both yeast and in planta two-hybrid studies revealed that FCA interacts with VP1. In vitro pull-down assay also confirmed that VP1 and FCA physically interact with each other. Mutation of the highly conserved WW domain in FCA suppressed nuclear translocation, disrupted FCA-VP1 interaction, and also suppressed ABA signaling. Our results indicate that FCA plays a pivotal role in ABA signaling by transducing the signaling from cytosol to the nucleus where it then interacts with the transcription factor complex of VP1/ABI5 that are required for ABA up-regulation of gene expression. Furthermore, our observations suggest although FCA regulates flowering in dicotyledonous plants, its role in cereals is centered on the regulation of seed germination, an intruging divergence in function for this regulatory protein. The role of SnRK2 protein kinase family in mediating the ABA suppression of gene expression has also been explored in this project. Among the ten family members, SAPK1 and SAPK2 were sufficient in mimicking ABA in suppressing the GA-induced α-amylase expression. Neither of these SnRK2 kinases appears to have significant inhibition on ABA induction. None of the other SnRK2 genes exert the same effect. However, knocking down of the expression of either SAPK1 or SAPK2 gene, or both of them, had no significant effect on the action of ABA. An additional, yet unidentified, regulator is likely to be involved in the ABA suppression of gene expression. In summary, the results obtained in this thesis project suggest the existence of multiple ABA signaling pathways leading to the ABA regulation of gene expression. The role of one of signaling molecules, FCA, have been investigated.
近年來許多植物可能的ABA (abscisic acid, 離層酸) 受器 (receptor) 陸續被發表, 然而某些成員正確性被嚴重質疑, 本實驗主要目的在探討幾個可能的ABA調控因子在穀類糊粉層細胞中離酸信息傳導所扮演的角色, 這些基因包括: FCA (Flower time Control protein A), CHLH (H subunit of Chloroplast Mg2+-chelatase), GTG (GPCR-type G protein), 以及RPK (receptor-like protein kinase). 藉由在糊粉層中持續性表現或是RNA干擾(RNAi)這些基因, 我們嘗試找出它們對ABA及GA(Gibberline, 吉貝素)信息傳導的影響. 我們也將這些調控蛋白融合綠色螢光蛋白(GFP)來觀察牠們在細胞中分佈的情況. 結果顯示FCA的持續性表現會增益30% ABA 所誘發的LEA(Late Embrygenesis Abundant protein)基因表現, 而FCA 及CHLH的RNAi 會顯著的抑制此反應. 如同時將此四個調控因子以RNAi處理抑制它們的表現, 那麼ABA 所誘發的LEA表現將會更進一步的被抑制. 然而, 其他的一些賀爾蒙信息傳導作用, 像是GA 所誘發且會被ABA所抑制的α澱粉酶(α-amylase)則不受此四個調控蛋白所影響. 我們發現RPK蛋白分佈於細胞膜ㄧ帶, CHLH分布在質體(plastid)中, GTG分布於液泡狀物體的表面, 顯示這些調控蛋白可能擁有不同功能. 而這作用會被ABI1基因所抑制, 顯示PYR/PYL/RCAR系統亦與這些調控因子有關聯. 藉由各種不同的研究策略, 我們發現FCA為一個重要的ABA信息強化因子(enhancer). 如前面所述, FCA其作用對象僅針對ABA信息系統, 持續性表現會增益超過30% ABA 所誘發的LEA基因表現. 在ABA信息系統中, FCA作用於ABI5/VP1, 這兩個對ABA 誘發LEA表現至關重要的轉錄因子的上游. FCA-GFP蛋白一開始以小點狀分佈於細胞質中, 隨著時間增加, FCA逐漸移往細胞核中. 這種運動可以被ABA處理所加速. 且為ABI1所抑制. 不管在以酵母菌或是植物細胞為背景的雙雜合(two-hybrid)系統中, FCA都會與VP1這個轉錄因子發生交互反應(Interaction). 在活體外進行的pull-down assay也呈現相同結果. 我們更發現當雙色胺酸功能區(WW domain)發生變異時, FCA向細胞核進行的運動, 與VP1的交互反應以及對ABA信息的增益能力都會被抑制. 結合以上結果, 我們證明FCA 蛋白具有將ABA信息自細胞質傳導到細胞核內, 並與VP1/ABI5發生交互反應, 從而促進ABA誘導基因之表現. 為了解ABA與GA 之間的拮抗關係, 我們針對水稻SAPK(屬於SnRK2群)的基因群進行研究, 發現其中SAPK1與SAPK2對GA誘發澱粉酶的表現具有某種程度的抑制效果. 但即使將此兩基因基因同時以RNAi技術進行干擾, ABA依舊抑制澱粉酶的表現. 總體而言, 本實驗所獲得的結果證實有多條ABA信息傳遞的途徑存在於穀類糊粉層細胞之中, 其中FCA所扮演的角色在本研究中已獲得闡明.
URI: http://hdl.handle.net/11455/35839
其他識別: U0005-2208201214043600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2208201214043600
Appears in Collections:生物科技學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.