Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35840
標題: Fine Mapping and Trait Characterization of rolts in Rice
水稻rolts基因座之精確定位與性狀分析
作者: 黃文宏
Huang, Wen-Hung
關鍵字: 水稻
rice
根部發育
精確定位
次世代定序
root dvelopment
fine-mapping
next generation sequencing
出版社: 生物科技學研究所
引用: 林雍凱.(2007). 調控水稻SA1613.1與台農67號之F2子代穗數性狀主要基因座的定位。碩士論文。國立中興大學生物科技學研究所 朱俊穎.(2008). 以表現輔助蛋白增進植物農桿菌轉殖法的效率與建立帶有qPN11(S)基因座之TNG67近同源品系與其性狀分析。碩士論文。國立中興大學生物科技學研究所 陳晟銘.(2011). 調控水稻種子根發育一數量性狀基因座之染色體定位分析及其性狀鑑定。碩士論文。國立中興大學生物科技學研究所 江瑞拱.(2003). 臺東區農業改良場七十五周年特刊 – 稻之手札.行政院農業委員會臺東區農業改良場  編印. Allison, D. B., X. Q. Cui, et al. (2006). "Microarray data analysis: from disarray to consolidation and consensus." Nature Reviews Genetics 7(1): 55-65. Bai, J. Y., Q. Zhang, et al. (2006). "Comparison of different foreground and background selection methods in marker-assisted introgression." Yi Chuan Xue Bao 33(12): 1073-1080. Burg, S. P. (1973). "Ethylene in plant growth." Proc Natl Acad Sci U S A 70(2): 591-597. Celenza, J. L., Jr., P. L. Grisafi, et al. (1995). "A pathway for lateral root formation in Arabidopsis thaliana." Genes Dev 9(17): 2131-2142. Chakravarthi, B. K. and R. Naravaneni (2006). "SSR marker based DNA fingerprinting and diversity study in rice (Oryza sativa. L)." African Journal of Biotechnology 5(9): 684-688. Cohen, J. D., J. P. Slovin, et al. (2003). "Two genetically discrete pathways convert tryptophan to auxin: more redundancy in auxin biosynthesis." Trends Plant Sci 8(5): 197-199. Collard, B. C. and D. J. Mackill (2008). "Marker-assisted selection: an approach for precision plant breeding in the twenty-first century." Philos Trans R Soc Lond B Biol Sci 363(1491): 557-572. De Smet, D., K. Jochmans, et al. (2008). "Development of thrombotic thrombocytopenic purpura after a single dose of gemcitabine." Ann Hematol 87(6): 495-496. Dharmasiri, S., R. Swarup, et al. (2006). "AXR4 is required for localization of the auxin influx facilitator AUX1." Science 312(5777): 1218-1220. Duan, Y. H., Y. L. Zhang, et al. (2007). "Responses of rice cultivars with different nitrogen use efficiency to partial nitrate nutrition." Annals of Botany 99(6): 1153-1160. Hoshikawa, Y. and S. Ichii (1989). "[Structures and functions of steroid hormone response elements]." Nihon Rinsho 47(10): 2324-2329. Horii H, Nemoto K, Mijyamoto N, Harada J (2006) Shoot communication quantitative trait loci for adventitious and lateral root in rice. PlantBreeding 125: 198-200 Inukai, Y., M. Miwa, et al. (2001). "RRLI, RRL2 and CRL2 loci regulating root elongation in rice." Breeding Science 51(4): 231-239. Inukai, Y., T. Sakamoto, et al. (2005). "Crown rootless1, which is essential for crown root formation in rice, is a target of an AUXIN RESPONSE FACTOR in auxin signaling." Plant Cell 17(5): 1387-1396. Jia, L., Z. Wu, et al. (2011). "Identification of a novel mitochondrial protein, short postembryonic roots 1 (SPR1), involved in root development and iron homeostasis in Oryza sativa." New Phytologist 189(3): 843-855. Jia, L. Q., B. T. Zhang, et al. (2008). "OsCYT-INV1 for alkaline/neutral invertase is involved in root cell development and reproductivity in rice (Oryza sativa L.)." Planta 228(1): 51-59. Jiang, H., S. Wang, et al. (2005). "A novel short-root gene encodes a glucosamine-6-phosphate acetyltransferase required for maintaining normal root cell shape in rice." Plant Physiology 138(1): 232-242. Kamiya, N., H. Nagasaki, et al. (2003). "Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem." Plant Journal 35(4): 429-441. Kobayashi, T., M. Suzuki, et al. (2005). "Expression of iron-acquisition-related genes in iron-deficient rice is co-ordinately induced by partially conserved iron-deficiency-responsive elements." Journal of Experimental Botany 56(415): 1305-1316. Leyser, O. (2005). "The fall and rise of apical dominance." Curr Opin Genet Dev 15(4): 468-471. Liu, H. J., S. F. Wang, et al. (2005) "ARL1, a LOB-domain protein required for adventitious root formation in rice." Plant Journal 43, 47-56 DOI: DOI 10.1111/j.1365-313X.2005.02434.x. Lorbiecke, R. and M. Sauter (1999). "Adventitious root growth and cell-cycle induction in deepwater rice." Plant Physiology 119(1): 21-30. Marchant, A., J. Kargul, et al. (1999). "AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues." Embo Journal 18(8): 2066-2073. Moons, A. (2008). "Transcriptional profiling of the PDR gene family in rice roots in response to plant growth regulators, redox perturbations and weak organic acid stresses." Planta 229(1): 53-71. Peer, W. A., A. Bandyopadhyay, et al. (2004). "Variation in expression and protein localization of the PIN family of auxin efflux facilitator proteins in flavonoid mutants with altered auxin transport in Arabidopsis thaliana." Plant Cell 16(7): 1898-1911. Pelosi, A., M. C. S. Lee, et al. (1995). "Hormonal-Control of Root Primordia Differentiation and Root-Formation in Cultured Explants of Eucalyptus-Globulus Seedlings." Australian Journal of Plant Physiology 22(3): 409-415. Sturm, A. (1999). "Invertases. Primary structures, functions, and roles in plant development and sucrose partitioning." Plant Physiology 121(1): 1-7. Swarup, R., J. Friml, et al. (2001). "Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex." Genes & Development 15(20): 2648-2653. Takehisa, H., Y. Sato, et al. (2012). "Genome-wide transcriptome dissection of the rice root system: implications for developmental and physiological functions." Plant Journal 69(1): 126-140. Truernit, E., H. Bauby, et al. (2008). "High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis." Plant Cell 20(6): 1494-1503. Wang, X. F., F. F. He, et al. (2011). "OsCAND1 is required for crown root emergence in rice." Mol Plant 4(2): 289-299. Wang C, Tseng T, Lin C (2002) Rice biotech research at the Taiwan Agricultural Research Institute. Asia Pacific Botech News 6: 950-956 Yano, K., T. Takashi, et al. (2012). "Efficacy of microarray profiling data combined with QTL mapping for the identification of a QTL gene controlling the initial growth rate in rice." Plant and Cell Physiology 53(4): 729-739.
摘要: TNG67 (T) and SA1613.1 (S) both are normal rice lines with high yield. However, their F2 progenies exhibit wide segregations in panicle number and root biomass. A continuous distribution in phenotypes suggests quantitative trait loci (QTL) controls underneath. Primary mapping on a F2 population revealed two major QTLs, qPN1 and qPN11, with epistatic interactions on each other. When both qPN1 alleles are from TNG67, allele of qPN11 from SA1613.1 acts dominantly and generates rootless plant with tiny single tiller, abbreviated as “rolts”. Since qPN1 was found to be very close to the centromere of chromosome 1, qPN11 was chosen as the major target for fine-mapping in this study. To do fine mapping on qPN11 that confer rolts phenotype, a BC2F6 line was established as a backcross recombinant inbred line (BRIL). In the selected BC2F6 line, only the qPN1 and qPN11 loci remained heterozygous while homozygous as TNG67 throughout the genome. Therefore any phenotypic changes in its selfed progenies must be caused by segregation of qPN1 and/or qPN11 but not interfered by other loci. Using 811 BC2F7 progenies as the mapping population, candidate region for qPN11 was narrowed down to be within InDel markers D32693 and I33724A. The theoretical interval between these two markers is 1661 Kb in the Japonia genome with 232 predicted ORFs. RNA-Seq analysis on roots of 5 DAG seedlings were employed to identify genes that located within the candidate region and showed differential expressions between normal [T,T] and rolts[T,S] plants (the symbols before and after comma represent qPN1 and qPN11 allele, respectively). Hydroponic culture of rolts seedlings revealed an early symptom five days after germination. Compared with normal plants, rolts seedlings exhibited a short seminal root, very few lateral root, and absence of adventitious root (crown root). Confocal microscopic studies on the seminal root of rolts seedlings revealed absence of long cells in its elongation region and irregular cell walls all over the root cells. This result suggests that rolts mutation may disturb cell elongation and cell wall biogenesis. As symptom of root defect in rolts can be lessened by providing 1% sucrose, indicates that function of rolts can be modulated by nutrition. Moreover, rolts plant is less responsive to exogenous auxin, implicates a defect in auxin signaling pathway.
TNG67與SA1613.1均屬外觀正常且豐產的水稻品系,但其雜交產生的F2子代在分蘗數及根部性狀上卻出現明顯的分離現象,且呈現連續分佈,暗示其受到數量遺傳基因座(QTL)調控。本實驗室利用F2族群進行初步基因座定位分析,得知第1號與第11號染色體上各有一個QTL候選基因座,分別命名為qPN1與qPN11。以逗號前後分別代表qPN1與PN11之基因型(T:TNG67同型接合,S:SA1316.1同型接合,H:heterozygous異型接合),當qPN1與qPN11的基因型組合為[T,S]時,植株外表型為弱小單分蘗,且幾乎無根,稱此性狀為rolts (rootless plant with tiny single tiller)。 BC2F7為目前精確基因座定位分析的族群,是經由兩次與TNG67回交以及多次的自交所得到的,其染色體組的大部分區塊均已固定為TNG67同型接合狀態,不再分離干擾性狀判定,唯獨qPN1與qPN11之基因型仍維持異型接合狀態,故可分離產生rolts植株,作為精確定位rolts基因之用。共分析811株BC2F7植株的外表型與[qPN1,qPN11]基因型,發現可將qPN11基因座候選區間縮小至InDel分子標誌D32693與I33724A之間 (各有兩個植株提供證據),該區間在TN67基因組上為1661 Kb,但在SA1613.1基因組上則為1189 Kb。嘗試使用即時定量PCR檢測區間內有興趣基因之表現量。此外,利用次世代定序之技術,分析rolts植株與正常植株5 DAG之種子根全基因表現模式,試圖找出差異所在。     使用水耕栽培[T,S] rolts植株,發現在種子萌芽五天後即出現明顯性狀,與[T,T]植株相比較,其種子根短且不定根少甚至缺乏。以共軛焦顯微鏡觀察rolt植株的種子根,發現在根部延長區(elongation zone)缺乏長細胞(正常株細胞會有長短之分),且細胞壁形狀摺皺不規則,推測rolts性狀主要為影響根部細胞延長與細胞壁生成。上述rolts性狀在改變營養環境(MS含糖培養基)或是添加外源生長素(NAA-增加不定根的形成)之後,可緩解其異常性狀,分別可以觀察到根部長度增長與不定根根數增加。此試驗指出rolts基因的屬性可能與營養攝取及生長素相關。 
URI: http://hdl.handle.net/11455/35840
其他識別: U0005-2108201213344100
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2108201213344100
Appears in Collections:生物科技學研究所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.