Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3589
標題: 利用原子力機械力微影製作導電高分子和白金奈米導線用於感測器之探討
Electrochemical Synthesis of Polypyrrole and Pt Nanowires within PMMA Nanochannels Produced by AFM Mechanical Lithography
作者: 廖商惟
Liao, Shang-Wei
關鍵字: conducting polymer
導電高分子
AFM lithography
nanowire
原子力微影術
奈米導線
出版社: 化學工程學系所
引用: [1] 和敏夫,臨床化學,合記圖書出版,1998。 [2] L.C. Jr Clark, C.Lyons, Ann. N.Y.Acad.Sci. 102, 29, 1962. [3] C.R.K. Rao, D.C. Trivedi, Coordination Chemistry Reviews 249, 613, 2005. [4] J.C. Vidal, E.Garcia-Ruiz, J.R. Castillo, J. Pharm. Biomed. Anal. 24 51, 2000. [5] S. Ahemd, S. Ji, L.Petrik, V.M. Linkov, Analytical. Science 20, 1283, 2004. [6] P.J. Kulesza, M. Matczak, A. Wolkiewicz, B. Grzybowska, M. Galkowski, M.A. Malik, A. Wieckowski, Electrochimica Acta 44, 2131, 1999. [7] G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57, 1982. [8] G. Binning, C.F. Quate, Ch. Gerber, Phys. Rev. Lett. 56,930, 1986. [9] M.R. Rodgers, M.A. Wendman, F.D. Yashar, Microelectron. Reliab. 33, 1947, 1993. [10] N. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 68, 2921, 1991. [11] G. Neubauer, A. Erickson, C.C. Williams, J.J. Kopanski, M. Rodgers, D. Adderton, J. Vac. Sci. Technol. B 14, 426, 1996. [12] H.J. Mamin, D. Rugar, J.E. Stern, R.E. Fontana, Jr., P. Kasiraj, Appl. Phys. Lett. 55, 318, 1989. [13] A. Noy, D.V. Vezenov, J.F. Kayyem, T.J. Meade, C.M. Lieber, Chem. Biol. 4, 519, 1997. [14] P.C.D. Hobbs, Y. Martin, C.C. Williams, H.K. Wickramasinghe, Proc. SPIE 897, 26, 1988. [15] C.B. Prater, Y.E. Strausser, Proc. 5th International Conference on Defect Recognition and Image Processing in Semiconductors and Devices 69, 1993. [16] C. Baur, A. Bugacov, B.E. Koel, A. Madhukar, N. Montoya, T.R. Ramachandran, A.A.G. Requicha, R. Resch, P. Will, Nanotechnology 9, 360, 1998. [17] P.H. Beton, A.W. Dunn, P. Moriarty, Appl. Phys. Lett. 67, 1075, 1995. [18] T.A. Jung, R.R. Schlittler, J.K. Gimzewski, H. Tang, C. Joachim, Science 271, 181, 1996. [19] J.A. Stroscio, D.M. Eigler, Science 254, 1319, 1991. [20] M.T. Cuberes, R.R. Schlitter, J.K. Gimzewski, Appl. Phys. Lett. 69, 3016, 1996. [21] I.W. Lyo, P. Avouris, Science 253, 173, 1991. [22] M.A. McCord, R.F. W. Pease, J. Phys. Colloq. 47, 485, 1986. [23] H.T. Soh, K.W. Guarini, C.F. Quate, “Scanning Probe Lithography”, Kluwer, Boston, 2001. [24] V. Bouchiat, D. Esteve, Appl. Phys. Lett. 69, 3098, 1996. [25] L.L. Sohn, R.L. Willett, Appl. Phys. Lett. 67, 1552, 1995. [26] R. Magno, B.R. Bennett, Appl. Phys. Lett. 70, 1855, 1997. [27] S. Hu, S. Altmeyer, A. Hamidi, B. Spangenberg, H. Kurz, J. Vac. Sci. Technol. B 16, 1983, 1998. [28] U. Kunze, B. Klehn, Adv. Mater. 11, 1473, 1999. [29] B. Klehn, U. Kunze, J. Appl. Phys. 85, 3897, 1999. [30] S. Hu, A. Hamidi, S. Altmeyer, T. Koster, B. Spangenberg, H. Kurz, J. Vac. Sci. Technol. B 16, 2822, 1998. [31] S. Xu, G.Y. Liu, Langmuir 13, 127, 1997. [32] S. Xu, S. Miller, P.E. Laibinis, G.Y. Liu, Langmuir 15, 7244, 1999. [33] G.Y. Liu, S. Xu, Y. Qian, Acc. Chem. Res. 33, 457, 2000. [34] H.J. Mamin, B.D. Terris, L.S. Fan, S. Hoen, R.C. Barrett, D. Rugar, IBM J. of Res. and Dev. 39, 681, 1995. [35] H.J. Mamin, D. Rugar, Appl. Phys. Lett. 61, 1003, 1992. [36] H.J. Mamin, Appl. Phys. Lett. 69, 433, 1996. [37] J.A. Dagata, J. Schneir, H.H. Harary, C.J. Evans, M.T. Postek, J. Bennett, Appl. Phys. Lett. 56, 2001, 1990. [38] N. Kramer, J. Jorritsma, H. Birk, C. Schőnenberger, J. Vac. Sci. Technol. B 13, 805, 1995. [39] S.C. Minne, P. Flueckiger, H.T. Soh, C.F. Quate, J. Vac. Sci. Technol. B 13, 1380, 1995. [40] L. Tsau, D. Wang, K.L. Wang, Appl. Phys. Lett. 64, 2133, 1994. [41] H. Sugimura, T. Uchida, N. Kitamura, H. Masuhara, Appl. Phys. Lett. 63, 1288, 1993. [42] T. Thundat, L.A. Nagahara, P.I. Oden, S.M. Lindsay, M.A. George, W.S. Glaunsinger, J. Vac. Sci. Technol. A 8, 3537, 1990. [43] H.J. Song, M.J. Rack, K. Abugharbieh, S.Y. Lee, V. Khan, D.K. Ferry, D.R. Allee, J. Vac. Sci. Technol. B 12, 3720, 1994. [44] E.S. Snow, D. Park, P.M. Campbell, Appl. Phys. Lett. 69, 269, 1996. [45] P. Avouris, T. Hertel, R. Martel, Appl. Phys. Lett. 71, 285, 1997. [46] P.A. Fontaine, E. Dubois, D. Stievenard, J. Appl. Phys. 84, 1776, 1998. [47] E.S. Show, P.M. Campbell, Appl. Phys. Lett. 64, 1932, 1994. [48] H. Dai, N. Franklin, J. Han, Appl. Phys. Lett. 73, 1508, 1998. [49] M.A. McCord, Ph.D. Thesis, Stanford University 1987. [50] A. Majumdar, P.I. Oden, J.P. Carrejo, L.A. Nagahara, J.J. Graham, J. Alexander, Appl. Phys. Lett. 61, 2293, 1992. [51] S.W. Park, H.T. Soh, C.F. Quate, S.I. Park, Appl. Phys. Lett. 67, 2415, 1995. [52] R.D. Piner, J. Zhu, F. Xu, S. Hong, C.A. Mirkin, Science 283, 661, 1999. [53] S. Hong, J. Zhu, C.A. Mirkin, Science 286, 523, 1999. [54] K.B. Lee, S.J. Park, C.A. Mirkin, J.C. Smith, M. Mrksich. Science 295, 1702, 2002. [55] B.W. Maynor, Y. Li, J. Liu, Langmuir 17, 2575, 2001. [56] A. Noy, A.E. Miller, J.E. Klare, B.L. Weeks, B.W. Woods, J.J. DeYoreo, Nano Lett. 2, 109, 2002. [57] Y. Li, B.W. Maynor, J. Liu, J. Am. Chem. Soc. 123, 2105, 2001. [58] B.W. Maynor, S.F. Filocamo, M.W. Grinstaff, J. Liu, J. Am. Chem. Soc. 124, 522, 2002. [59] B.R Eggins, Chemical Sensors and Biosensors, Wiley, New York,2002. [60] 陳壽安,物理雙月刊,二十三卷,二期,2001。 [61] H. Shirakawa, S. Ikeda, Polymer, 2, 231, 1971. [62] R.L. Greene, G.B. Street, L.J. Suter, Phys. Rev. Lett. 34, 577, 1975. [63] H. Shirakawa, E.J. Lousi, A.G. MacDiarmid, C.K. Chiang, A.J. Hegger, J. Chem. Soc., Chem. Commun.16, 578, 1977. [64] T.V. Vernitskaky, O.N. Efimov, Russ. Chem. Rev. 66, 443,1997. [65] R. Hernandez, A.F. Diaz, R. Waltman, J. Bargon, J. Phy. Chem. 88, 3333, 1984. [66] J.-C. Chiang, A.G. MacDiarmid, Synth. Met. 13, 193, 1986. [67] B. Wessling, Synth. Met., 1991, 45, 119 [68] M. Gerard , A. Chaubey, B.D. Malhotra, Biosens. Bioelectron. 17, 345, 2002. [69] A.J. Heeger, In: Skotheim, T.A. (Ed.), Handbook of Conducting Polymers, vol. II. Marcel Dekker, New York, p. 729 and references therein, 1986. [70] The 2000 Nobel Prize in Chemistry-Information for the Public KUNGL. VETENSKAPSAKADEMIEN THE ROYAL SWEDISH ACADEMY OF SCIENCES October 10, 2000 http://nobelprize.org/chemistry/laureates/2000/public.html [71] A. Pron, Z. Kucharski, C. Budrowski, M. Zagorska, S. Krichene, J.Suwalski, G. Dehe, S. Lefeant, J. Chem. Phys. 83, 5923, 1989. [72] S.P. Armes, Synth. Met. 20, 365, 1987. [73] S. Machida, S. Miata, A. Techagumpuch, Synth. Met. 31, 311, 1989. [74] K.L. Tan, B.T.G. Tan, E.T. Kang, K.G. Neoh, Y.K. Ong, Phys. Rev.,B, Condens. Matter. 42, 7563, 1990. [75] J. Zhang, Y. She, B. Lu, Y. Zhou, K.F. Chin, J. Polym. Sci. 11, 334, 1993. [76] E.T. Kang, K.G. Neoh, Y.K. Ong, K.L. Tan, B.T.G. Tan, Macromolecules 24, 2822, 1991. [77] E.T. Kang, K.G. Neoh, T. Matsuyama, H. Yamaoka, Polym. Commun. 29, 201, 1988. [78] E.T. Kang, H.C. Ti, K.G. Neoh, T.C. Tan, Polym. J. 20, 399, 1988. [79] S. Rapi, V. Bocchi, G.P. Gardini, Synth. Met. 24, 217, 1988. [80] A.F. Diaz, K.K. Kanazawa, G.P. Gardini, J. Chem. Soc., Chem. Commun. 635, 1979. [81] S.N. Bladani, G. Parravano, Organic Electrochemistry (EdsMMBaizer, H Lund) (New York: Marcel Dekker, 1983) p. 995. [82] A.F. Diaz, K.K. Kanazawa, Extended Linear Chain Compounds (Ed. J S Miller) (New York: Plenum, 1983) p. 417. [83] R.A. Saraceno, J.G. Pack, A.G. Ewing, J. Electroanal. Chem. 197, 265, 1986. [84] E.M. Genies, G. Bidan, A.F. Diaz, J. Electroanal. Chem. 149, 101, 1983. [85] M. Gerard, A. Chaubey, B.D. Malhotra, Biosens. Bioelectron. 17, 345, 2002 [86] J. Shah, E. Wilkins, Electroanalysis 15, 157, 2003. [87] Biochemistry Basic: http://juang.bst.ntu.edu.tw/BCbasics/Enzyme12.htm [88] Trevor Palmer, Understanding Enzyme, 4th edition, published by Prentice Hall/Ellis Horwood, 1995. [89] Geoffrey L. Zubay, Biochemistry, 4th edition,published by Wm. C. Brown, 1998. [90] S. Gamati, J.H.T. Luong, A. Mulchandani, Biosens. Bioelectron. 6, 125, 1991. [91] T.P. Jones, M.D. Porter, Anal. Chem. 60, 404, 1988. [92] J. Li, L.S. Chia, N.K. Goh, S.N. Tan, J. Electroanal. Chem., 460, 234, 1999. [93] J.C. Vidal, E. Garcia, J.R. Castillo, Sensors and Actuators B, 57, 219, 1999. [94] W.J. Sung, Y.H. Bae, Biosens. Bioelectron. 18, 1231, 2003 [95] S. Fabiano, C. Tran-Minh, B. Piro, L.A. Dang, M.C. Pham, O. Vittori, Mater. Sci. Eng. C 21, 61, 2002. [96] L. Doretti, D. Ferrara, P. Gattolin, S. Lora, Talanta, 44, 859, 1997. [97] G.T. Constantinos, B.F. Ageliki, N.T. Pantelis, Electro. Commun. 7, 781, 2005. [98] J. Parellada, A. Narvaez, Biosens. Bioelectron. 12, 267, 1997. [99] F.T. Richard, S.S. Jerome, Handbook of Chemical and Biological Sensors, p5. [100] J.C. Vidal, E. Garcia, J.R. Castillo, Sensors and Actuators B 57, 219, 1999. [101] P. Mulchandani, A. Mulchandani, I. Kaneva, W.Chen, Biosens. Bioelectron. 14, 77, 1999. [102] T. You, O. Niwa, M. Tomita, S. Hirono, Anal. Chem. 75, 2080, 2003. [103] S. Iijima, Nature 354, 56, 1991. [104] S.J. Updike, G.P. Hicks, Nature 214, 986, 1967. [105] YSI:http://216.68.81.171/extranet/BTKL.nsf/447554deba0f52f2852569f500696b21/0f7ccb69a6ee82cf852569e70047cd17!OpenDocument [106] D.C. Tilotta, S. A. Merschman, Appl. Spectrosc 52, 106, 1998. [107] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin, 1988. [108] G. Massobrio and M. Grattarola “ISFET-based biosensoe modeling with SPLCE, Sensors and Actuators B 1, pp. 401-407 1990. [109] 馮晉嘉,微小化生物感測器技術趨勢分析及發展政策建議,工業技術研究院,台北,2002。 [110] 黎世棊,奈米碳管/全氟磺酸聚合物/葡萄糖氧化酵素薄膜和奈米碳管/聚吡咯/葡萄糖氧化酵素薄膜做為葡萄糖生物感測器之探討,中興大學化學工程學研究所碩士論文,2005。 [111] A.J. Bard, I.R. Faulkner, Electrochemical Methods: Fundaments and Applications, Wily, New York, 2000. [112] 胡啟章,電化學原理與方法,五南圖書出版公司,台北, 2002。 [113] J.H. Hsu, C.Y. Lin, J. Vac. Sci. Technol. B 22, 2768,2004 [114] S.Asavapiriyant, G.K. Chandler, G.A. Gunawardena, D. Pletcher, J. Electroanal. Chem. 177, 229, 1984. [115] S. Jahromi, J. Dijkstra, E. van der Vegte, B. Mostert, Chemphyschem 8, 693, 2002. [116] C. Jérôme, R. Jérôme, Angew. Chem. Int. Ed. 37, 2488, 1998. [117] 林俊羽,使用原子力顯微鏡製造金屬奈米線與奈米電極,2004。 [118] S.N. Magonov, M.H. Whangbo, “Surface Analysis with STM and AFM”, VCH, 1996. [119] M.T. Bray, S.H. Cohen, M.L. Lightbody, “Atomic Force Microscopy/Scanning Tunneling Microscopy”, Plenum, 1995. [120] S.A.G. Evans, J.G. Terry, N.O.V. Plank, A.J. Walton, L.M. Kene, C.J. Campbell, P. Ghazal, J.S. Beattie, T.J. Su, J. Crain, A.R. Mount, Electrochem. Commun. 7, 125, 2005. [121] P.C.S. Hayfield, Platinum Met. Rev. 27, 2, 1983. [122] A.A. Karyzkina, L. Gorton, G. Marko-Varga, Anal. Chem. 72 , 1720, 2000. [123] S. Eddy, K. Warriner, I. Christie, D. Ashworth, C. Purkiss, P. Vadgama, Biosens. Bioelectron. 10, 831, 1995. [124] K.S. Boosh, B.R. Kowalski, Anal. Chem. 66, 783A, 1994. [125] T. Sainsbury, J. Stolarczyk, D. Fitzmaurice, J. Phys. Chem. B 109, 16310, 2005.
摘要: 本研究成功的在聚甲基丙烯酸甲酯(PMMA)的奈米孔道中利用電化學聚合製作出聚吡咯奈米線。PMMA奈米孔道的製作是在塗佈PMMA薄膜的導電玻璃基板(ITO)上,經由原子力顯微鏡(atom force microscope, AFM)以機械力微影(mechanical lithography)的方式所製備,將此奈米孔道模板透過電化學聚合的方法即可製作出聚吡咯奈米線,PMMA奈米孔道與聚吡咯奈米導線的表面形貌經由原子力顯微鏡的量測,可觀測出 PMMA奈米孔道的寬度與深度分別為150和37 nm左右,聚吡咯奈米導線的寬度為350 nm而長度為20 μm,利用導電式的原子力顯微鏡模組與導電式的探針可對聚吡咯奈米導線的導電特性進行鑑定,由原子力顯微鏡的電流分佈圖中,可明顯的辨別出摻雜後的聚吡咯奈米導線與PMMA薄膜的電流大小差異。藉由這些表面形貌的研究有效的證明了電化學聚合聚吡咯奈米導線於機械力微影的PMMA奈米孔道中的可行性。 為了將AFM機械力微影奈米孔道的技術應用於化學感測器與生物感測器的製備,在本研究的第二部份中將白金以電化學沉積的方式沉積於PMMA奈米孔道中取代聚吡咯以利用其電催化的特性。以安培法(amperometric)在電位為-500 mV下電化學沉積白金60秒於PMMA奈米孔道/ITO的模板後可製作出白金奈米導線,可經由原子力顯微鏡觀測出白金奈米導線的寬度、高度與長度分別約為450、225 nm和10 μm,製作不同條數的白金奈米導線電極來偵測H2O2,由安培圖的電流訊號可發現,10條與5條白金奈米導線的電極其電流訊號會分別比2條白金奈米導線的電極高出約4倍和2.5倍左右。在葡萄糖的試驗中以戊二醛(glutaradehyde, GDI)與葡萄糖氧化酵素(GOx)摻混的薄膜修飾於白金電極表面,即可對葡萄糖進行偵測。
A novel approach for the fabrication of polypyrrole nanowires via electropolymerization within poly(methyl methacrylate) (PMMA) nanochannels on an indium tin oxide (ITO) substrate is reported. The nanochannels width and depth obtained by atomic force microscopy (AFM) mechanical lithography on PMMA coated ITO substrate are about 150 nm and 35 nm. The nanochannels act as templates for electropolymerization of polypyrrole nanowires. The morphology of PMMA nanochannels and polypyrrole nanowires were investigated by AFM. The polypyrrole nanowires are around 350 nm in width and 20 μm in length. The conducting properties of polypyrrole nanowires were identified by AFM with a conducting tip (CT-AFM). The AFM current image shows that the current difference can be distinguished between doped polypyrrole nanowires and PMMA thin film. The present methodology demonstrates the feasibility and effectiveness of electropolymerization of polypyrrole nanowires within PMMA nanochannels produced by AFM mechanical lithography. In order to apply this method to fabricate chemical sensor and biosensor, we replaced conducting polymers with platinum metal. After electrodepositing for 60 s at the potential of -500 mV versus Pt, the Pt nanolines width and height observed by AFM are about 450 nm and 225 nm, The length of Pt nanowires are 10μm. We fabricated different numbers of Pt nanowires patterns to examine H2O2 by amperometry. The result shows that the response current increased with the increased number of Pt nanowires.
URI: http://hdl.handle.net/11455/3589
其他識別: U0005-2606200616141600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2606200616141600
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.