Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3591
標題: 交聯型聚琥珀酸丁酯奈米複合材料之探討
A Study of Crosslinked Poly(butylene succinate)/Layered Silicate Nanocomposites
作者: 王姿雅
Wang, Tzu-Ya
關鍵字: Poly(butylene succinate)
聚琥珀酸丁酯
Montmorillonite
Solution intercalation
蒙脫土
溶液插層
出版社: 化學工程學系所
引用: 參考文獻 1. R.Chandra, R. Rustgi, Prog. Poly. Sci., 23, 1273 (1998) 2. Y. Someya, T. Nakazato, N. Teramoto, M. Shibata, J. Appl. Polym. Sci., 91, 1463 (2004) 3. A. Michael, D. Philippe, Mater. Sci. Eng., 28, 1 (2000) 4. J. S. Chen, M. D. Poliks, C. K. Ober, Y. Zhang, U. Wiesner, E. P. Giannelis, Polymer, 43, 4895 (2002) 5. A. K. Mohanty, M. Misra, G. Hinrichsen, Macromol. Mater. Eng., 1, 276 (2000) 6. 沈曉復,塑膠工業技術發展中心,環境生物材料講義 7. 美國飼料穀物協會, 生物可分解性塑膠, 美國飼料殼物協會, 第1頁 (1997) 8. T. Fujimaki, Polym. Degrad. Stab., 59, 209 (1998) 9. S. S. Ray, M. Okamoto, Prog. Polym. Sci., 28, 1539 (2003) 10. H. Van Olphen An Introduction to Clay Colloid Chemistry, 2nd ed. Wiley (1977) 11. 尹宗凡,蒙托土界面改質對對位聚苯乙烯奈米複合材料結晶型態之研究,義守大學材料工程研究所碩士論文.(2002) 12. D. J. Kim, W. S. Kim, D. H. Lee, K. E. Min, L. S. Park, I. K. Kang, I. R. Jeon, K. H. Seo, J. Appl. Polym. Sci., 81, 1115 (2001) 13. M. A. Khan, K. M. Idriss Ali, F. Yoshii, K. Makuuchi, Die. Angew. Makromol. Chem., 272, 94 (1999) 14. C. L. Song, F. Yoshii, T. Kume, J.Macromol.Sci-Pure Appl.Chem, A38, 961 (2001) 15. M. Suhartini, H. Mitomo, F. Yoshii, N. Nagasawa, T. Kume, J. Polym. Environ, 9, 4 (2001) 16. S. S. Ray,K. Okamoto,P. Maiti,and M. Okamoto, J. Nanosci. Nanotech., 2 , 1 (2002) 17. K. Okada,T. Mitsunaga and Y. Nagase, Korea-Australia Rheology Journal, 15, 43 (2003) 18. S. S. Ray,K. Okamoto,and M. Okamoto, Macromolecules, 36, 2355 (2003) 19. K. Okamoto,S. S. Ray,M. Okamoto, J. Polym. Sci. PartB: Polym. Phys., 45, 3160 (2003) 20. Y. Someya, T. Nakazato, N. Teramoto, M. Shibata, J. Appl. Polym. Sci., 91,1463 (2004) 21. G. X. Chen, J. S. Yoon, Polym. Degrad. Stab., 88, 206 (2005) 22. G. X. Chen, H. S. Kim, E. S. Kim, J. S. Yoon, Polymer, 46, 11829 (2005) 23. G. X. Chen, E. S Kim, J. S. Yoon, J. Appl. Polym. Sci, 98, 1727 (2005) 24. G. X. Chen, J. S. Yoon, J. Polym. Sci. PartB: Polym. Phys., 43, 478 (2005) 25. G. X. Chen, J. S. Yoon, J. Polym. Sci. PartB: Polym. Phys., 43, 817 (2005) 26. Z. M. Li, Z. Y. Cheng, Mater.Res.Soc.Symp.Proc., 889, 1 (2006) 27. 許嘉惠,聚對苯二甲酸乙二酯結晶行為-熱歷史效應,元智大學化工系碩士論文.(2003) 28. Ulf. W. Gedde, Polymer Physics, Chapman & Hall, p176 (1995) 29. W. Xu, G. Liang, W. Wang, S. Tang, P. He, W. P. Pan, J. Appl. Polym. Sci., 88, 3093 (2003) 30. T. Ohkita, S. H. Lee, J. Appl. Polym. Sci., 97, 1107 (2005) 31. K. Ishida, S. I. Han, Y. Inoue, S. S. Im, Macromol.Chem.Phys.,206, 1028 (2005) 32. M. Ren, J. Song, C. Song, H. Zhang, X. Sun, Q. Chen, H. Zhang, Z. Mo, J. polym. Sci. PartB: Polym. Phys., 43, 3231 (2005) 33. D. Wu, C. Zhou, X. Fan, D. Mao, Z. Bian, J. Appl. Polym. Sci., 99, 3257 (2006) 34. R. K. Bhardwaj, Macromolecules, 34, 9189 (2001) 35. M. A. Khan, K. M. Idriss Ali, F. Yoshii, K. Makuuchi, Polym. Degrad. Stab., 63, 261 (1999) 36. K. Cho, J. Lee, K. Kwon, J. Appl. Polym. Sci., 79, 1025 (2001) 37. C. Tsutsumi, N. Hayase, K. Nakagawa, S. Tanaka, Y. Miyahara, Macromol. Symp., 197, 431 (2003) 38. I. Taniguchi, S. Nakano, T. Nakamura, A. El-Salmawy, M.Miyamoto, Y. Kimura, Macromol. Biosci., 2, No.9 (2002) 39. N. Honda, I. Taniguchi, M. Miyamoto, Y. Kimura, Macromol. Biosci., 3, No.3/4 (2003) 40. B. Bruthum, P. Zingsheim, Handbook of Polymeric Foams and Foams Technology; D. Klempner, K. C. Frisch, Eds., Hanser p.187 (1991) 41. T. J. Pinnavaia, G. W. Beall, Polymer-clay Nanocomposites, John Wiley & Sons (2000) 42. Z. Zhao, W. Yu, X. Chen, Radiat. Phys. Chem., 65, 173 (2002) 43. R. K. Bharadwaj, A. R. Mehrabi, C. Hamilton, C. Trujillo, M. Murga, R. Fan, A. Chavira, A. K. Thompson, Polymer, 43, 3699 (2002) 44. Y. T. Shieh, C. M. Liu, J. Appl. Polym. Sci. ,83, 2548 (2002) 45. X. Kong, X. Yang, E. Zhou, Polym. Eng. Sci., 41, No.5 (2001)
摘要: 摘要 本研究藉由將十六烷基的陽離子型界面活性劑改質之蒙脫土(MMT),分散在聚琥珀酸丁酯中,利用溶劑插層法製備出聚琥珀酸丁酯/蒙脫土之奈米複合材料(PBSMC)。另一方面並添加1phr 過氧化二異丙苯到PBSMC中,隨即進行交聯反應,製備出交聯型聚琥珀酸丁酯/蒙脫土奈米複合材料(PBSDMC)。由WAXD分析發現經改質後蒙脫土層間距改變,而進一步由TEM觀察PBSMC、PBSDMC系列材料,發現在蒙脫土含量為5wt%時其為有序部分插層、部分脫層結構。由DMA分析發現,當蒙脫土含量為10wt%之PBSDMC材料,在交聯結構與聚琥珀酸丁酯/蒙脫土作用之影響下,其玻璃轉移溫度可提昇10.5℃左右。且隨著蒙脫土含量的增加,PBSMC和PBSDMC系列材料在儲存模數(E’)和損失模數(E”)隨之提升。經由非等溫結晶動力學研究蒙脫土則發現,隨著蒙脫土含量增加,會使得結晶溫度往低溫方向偏移,結晶度下降,結晶半生期較長。在氧氣阻氣性質方面,不論是PBSMC或PBSDMC系列材料,隨蒙脫土含量增加,均可使材料的阻氣性提升,最高可提升至46.64%。藉由酵素進行生物分解性分析,發現結晶度會影響材料之分解速率,因為隨著蒙脫土含量增加,結晶程度降低,且蒙脫土末端的OH官能基會加速水解反應,因而提升材料的生物分解性。
Abstracts In this research, two types of nanocomposites were prepared and characterized.For the first type, poly(butylene succinate) (PBS)-clay nanocomposites (PBSMC) were prepared by dispersing organically modified montmorillonite (MMT) into polymer solution. On the other hand, PBSMC were simultaneously crosslinked using dicumyl peroxide (DCP).As a result,the crosslinked PBS-clay (PBSDMC) nanocomposites were obtained. Montmorillonite modified with hexadecylpyridium chloride were used for these two nanocomposites at various concentration (1wt%, 3wt%, 5wt% and 10wt%). Wide angle X-ray diffraction (WAXD) studies revealed these two types of nanocomposites with different basal spacing comparing to neat MMT. Transmission electron microscopy (TEM) showed ordered intercalation and partial exfoliation structures in these nanocomposites with 5wt% loading level. According to WAXD and TEM analysis, we proved that PBSMC and PBSDMC successfully obtained via solution intercalation method. The dynamic mechanical analysis (DMA) showed that glass transition temperature (Tg), storage modulus(E') and loss modulus(E”) can be enhanced by the addition of the modified MMT. In particular, the PBSDMC sample with 10wt% loading level of MMT demonstrated 10.5℃ enhancement in Tg. This was attributed to the crosslinked structure and PBS-MMT entanglement. To further study how did MMT dispersion in PBS influence the crystallization, nonisothermal crystallization kinetics were investigated by using differential scanning calorimeter (DSC) to study crystallization characteristics of PBSMC and PBSDMC. For a given cooling rate, crystallization temperature (Tc) and crystallinity decreased with increasing MMT concentration in PBS. In addition, Oxygen permeability rate of nanocomposites decreased with increasing MMT content. It is important to note that enzymetic hydrolysis of PBSMC and PBSDMC were improved by blending with MMT.
URI: http://hdl.handle.net/11455/3591
其他識別: U0005-2707200621405200
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2707200621405200
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.