Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3593
標題: 多層壁奈米碳管/全氟磺酸聚合物複合材料薄膜做為感測器之探討
Sensors Based on Multiwalled Carbon Nanotubes/Nafion Composite Film
作者: 廖宏偉
Liaw, Hong-Wei
關鍵字: carbon nanotubes
奈米碳管
biosensors
ethanol
nicotine
Nafion
生物感測器
酒精
尼古丁
全氟磺酸聚合物
出版社: 化學工程學系所
引用: [1] 台灣菸酒股份公司:http://www.ttl.com.tw [2] 財政部國庫署: http://www.nta.gov.tw/ [3] G. Lazarova, L. Genova, V. Kostov, Acta. Biotechnol., 7, 97, 1987. [4] P.J. Fletcher, J.F.V. Staden, Anal.Chim. Acta., 499, 123, 2003. [5] H. Liden, A.R. Vijayakumar, L. Gorton, G. Marko-Varga, J. Pharm. Biomed. Anal., 17, 1111,1998. [6] M. Zilly, P. Langmann, U. Lenker, V. Satzinger, D. Schirmer, H. Klinker, J. Chromatogr. B 798, 179, 2003. [7] R. C. Gupta, G. D. Lundberg, Clin. Toxicol., 11, 437, 1977. [8] T. Foussard, C. Garrault, B. Thiault, Analusis, 18, 588, 1990. [9] B. Sellergren, A. Zander, T. Renner, A. Swietlow, J. Chromatography A, 829,143,1998. [10] X. Hui, X. Li, Z. Yuan, Chinese J. Anal.Chem, 29, 1485, 2001. [11] F. Palmisano, P.G. Zambonin, D. Centonze, Fresenius. J. Anal. Chem., 366, 586, 2000. [12] M. Gerard, A. Chaubey, B.D. Malhotra, Biosens. Bioelectron., 17, 345,2002. [13] J.K. Park, H.J. Yee, K.S. Lee, W.Y. Lee, M.C. Shin,T.H. Kim, S.R. Kim, Anal. Chim. Acta., 390, 83, 1999. [14] N.G. Patel, S. Meier, K. Cammann, G.C. Chemnitius, Sens. Actuators B 75, 101, 2001. [15] A.M. Azevedo, D.M.F. Prazeres, J.M.S. Cabral, L.P. Fonseca , Biosens. Bioelectron., 21, 235, 2005. [16] W. J. Blaedel, R. A. Jenkins, Anal. Chem., 47, 1337, 1975. [17] M. Jacques, P. J. Elving, J. Am. Chem., 102, 6533, 1980. [18] S. Iijima, Nature, 354, 56, 1991. [19] B.S. Sherigara, W. Kutner, F.D. Souza, Electroanalysis, 15, 753 ,2003. [20] W. Huang, G. Mai, Y. Liu; C. Yang, W. Qua, J. Nanosci. Nanotechnol., 4, 423, 2004. [21] S. Lu, X. Dang, K. Wu, S. Hu, J. Nanosci. Nanotechnol., 3,401, 2003. [22] J. Wang, M. Musameh, A. Merkoci, Y. Lin, Electrochem. Commun., 4, 743, 2002. [23] C.E. Banks, R.R. Moore, T.J. Davies, R.G. Compton, Chem. Commun., 16, 1804, 2004. [24] R.R. Moore, C.E. Banks, R.G. Compton, Anal. Chem 76, 2677, 2004. [25] K.A. Joshi, J. Tang, R. Haddon, J. Wang, W. Chen, A. Mulchandania, Electroanalysis, 17, 54, 2005. [26] F.H. Wu, G.C. Zhao, X.W. Wei, Z.S. Yang, Microchim. Acta., 144, 243, 2004. [27] J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Microchem. J., 73, 325, 2002. [28] Y.D. Zhao, W.D. Zhang, H. Chen, Q.M. Luo, Sens. Actuators B, 92, 279, 2003. [29] H. Cai, X.N. Cao, Y. Jiang, P.G. He, Anal. Bioanal. Chem., 375, 287, 2003. [30] J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Anal. Chem., 74, 1993, 2002. [31] Y.D. Zhao, W.D. Zhang, H. Chen, Q.M. Luo, Talanta, 58, 529, 2002 [32] Y.C. Tsai, J.M. Chen, F. Marken, Microchim. Acta., 150, 269, 2005. [33] Y.C. Tsai, S.C. Li, J.M. Chen, Langmuir, 21, 3653, 2005. [34] C.X. Cai, K.H. Xue, Y.M. Zhou, H. Yang, Talanta, 44, 339, 1997. [35] A. S. Santos, R. S. Freire, L. T. Kubota, J. Electroanal. Chem., 547, 135, 2003. [36] M. Boujtita, J. P. Hart, R. Pittson, Biosens. Bioelectron., 15, 257, 2000. [37] N. G. Patel, S. Meier, Sens. Actuator B 75, 101, 2001. [38] J. K. Park, H. J. Yee, K. S. Lee, W. Y. Lee, M. C. Shin, T. H. Kim, S. R. Kim, Analytica. Chimica. Act. A 390, 83, 1999. [39] N. A. Krasnegor, National Institiute on Drug Abuse (NIDA) research Monograph 23,DHEW publication No.(ADM) 79-800, 1979 [40] N. L. Benowitz, N. Eng. J. Med., 319, 1318, 1988. [41] P. Chowdhury, S. MacLeod, K. B. Udupa, Exp. Biol. Med., 227, 445, 2002. [42] T. Okamura, T. Noboru, Eur. J. Pharmacol., 263, 85, 1994 [43] R. E. Rasmussen, Life. Sci., 17, 767, 1975. [44] 行政院衛生署:http://www.doh.gov.tw [45] WHO: http://www.who.int [46] 行政院衛生署國民健康局:http://health99.doh.gov.tw/ [47] C. Heeschen, J.J. Jang, M. Weis, A. Pathak, S. Kaji, R.S. Hu, P.S. Tsao, F. L. Johnson, J. P. Cooke, Nature Medicine, 7, 833, 2001 [48] G. K. Loyd, M. Williams, J. Pharmacol. Exp. Ther., 292, 461, 2000. [49] P.A. Newhouse, A. Potter, E.D. Levin, Drugs Aging, 11, 206, 1997. [50] P.A. Newhouse, A. Potter, M. Kelton, J. Corwin, Psychiatry, 49, 268, 2001. [51] M. Nanjo, G. Guilbault, Anal. Chim. Acta.,75, 1975 [52] S. Yabuki, H. Shinohara, Y. Ikariyama, M. Aizawa, J. Electroanal. Chem., 277, 179, 1990. [53] T. J. Ohara, M. S.Vreeke, F. Battaglini, A. Heller, Elactroanalysis, 5, 825, 1993. [54] G. Markovarga, K. Johansson, L. Gorton, J. Chromatogr., 660, 153, 1994. [55] A. R. Vijayakumar, E. Csoregi, A. Heller, L. Gorton, Anal. Chim., 327, 223, 1996. [56] M. Boujita, N. Murr, Anal. Chim. Acta., 319, 91, 1996. [57] M. J. Dennison, J. M. Hall, A. P. F. Turner, Analyst, 121, 1769, 1996. [58] S. D. Sprules, I. C. Hartley, R. Wedge, J. P. Hart, R. Pittson, Anal. Chim. Acta., 329, 215, 1996. [59] F. Pariente, F. Tobalina, G. Moreno, L. Hernandez, E. Lorenzo, H. D. Abruna, Anal. Chem. 69, 4065, 1997. [60] Q. Wu, M. Maskus, F. Pariente, F. Tobalina, V. M. Fernandez, E. Lorenzo, H. D. Abruna, Anal. Chem. 68, 3688, 1996. [61] F. Tobalina, F. Pariente, L. Hernandez, H. D. Abruna, E. Lorenzo, Anal. Chim. Acta., 395, 17, 1999. [62] S. Garcia Mullor, M. Sanchez-Cabezudo, A. J. Miranda Ordieres, B. Lopez Ruiz, Talanta, 43, 779, 1996. [63] A. S. Santos, R. S. Freire, L.T. Kubota, J. Electroanal. Chem., 547, 135, 2003. [64] C.E. Efstathiou, E.P. Diamandis, T.P. Hasjiioannou, Analytica. Chimica. Acta, , 127, 173, 1981 [65] T. Matsue, A. Aoki, I. Uchida, T. Osa, Chem. Lett., 5, 957, 1987. [66] Y.H. Yang, M.H. Yang, H. Wang, L. Tang, G. Shen, R. Yu, Anal. Chim. Acta. 509, 151, 2004. [67] H.B. Suffredini, M.C. Santos, D. De Souza, L. Codognoto, P. Homem-de-Mello, K.M. Honorio, A.B.F. da Silva, S.A.S. Machado, L.A. Avaca, Anal. Lett., 38, 1587, 2005. [68] K. TOKO,Biomimetic Seneor Technology,2000. [69] 蘇宏基, “聚苯胺胺基酸氧化酵素碳粉修飾電極分析胺基酸與電化學石英晶體微天平電極探討聚苯胺薄膜分析對掌性胺基酸的可行性”, 國立東華大學化學系碩士論文, 2003. [70] B.R. Eggins, Chemical Sensors and Biosensors, Wiley, New York, 2002 [71] L.C. Jr Clark, C. Lyons, Ann. N.Y. Acad. Sci., 102, 29, 1962 [72] A.J. Bard, I.R. Faulkner, Electrochemical Methods: Fundaments and Applications, Wily, New York, 2000. [73] D.R. Crow, Principle and Applications of Electrochemistry,高立,1998 [74] J. Parellada, A. Narvaez, Biosens. Bioelectron., 12, 267, 1997. [75] J.M.S. Cabral, J.F. Kennedy, R. F. Taylor(New York; Dekker), 73,1991. [76] Rice University: Rick Smalley’s Group Home Page-Image Gallery. http://smalley.rice.edu/index.cfm [77] C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath, Chem. Phys. Chem., 2, 78, 2001. [78] D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, Nature, 363, 605, 1993. [79] R.P. Baldwin, Talanta, 38, 1, 1991. [80] R.H. Baghman, A.A. Zakhidov, W.A. de Heer, Science, 297, 787, 2002. [81] M. Musameh, J. Wang, A. Merkoci, Y. Lin, Electrochem. Commun., 4, 743, 2002. [82] Q. Zhao, Z. Gan, Q. Zhuang, Electroanalysis, 14, 1609, 2002. [83] J. Wang, Electroanalysis, 17, 7, 2005. [84] P.J. Britto, K.S.V. Santhanam, P.J. Ajayan, Bioelectrochem. Bioenerg., 41, 121, 1996. [85] J. Wang, M. Musameh, Anal. Chem., 75, 2075, 2003. [86] J. Wang, M. Musameh, Y. Lin, J. Am. Chem. Soc., 125, 2408, 2003. [87] DuPont: http://www.dupont.com.tw [88] C.R. Martin, R.B. Moore, Macromolecules, 21, 1334, 1988 [89] R.S. Yeo, Polymer, 21, 432, 1980. [90] B. Hoyer, T.M. Florence, G.E. Batley, Anal. Chem., 59, 1608, 1987. [91] J. Wang, Analytical Electrochemistry, Second Edition, Wiley-VCH, New York, 2000. [92] D.J. Harrison, R.F.B. Turner, H.P. Baltes, Anal. Chem., 60, 2002, 1988. [93] J.M. Zen M.L. Lee, Anal. Chem., 65, 3238, 1993 [94] Z. Chen, Z. Pourabedi, D.B. Hibbert, Electroanalysis, 11, 964, 1999. [95] B. Hoyer, N. Jensen, L.P. Busch, Electroanalysis, 13, 843, 2000. [96] K. Crowley, J. Cassidy, Electroanalysis, 14, 1077, 2001. [97] G. Kefala, A. Econmou, A. Voulgaropoulos, Analyst, 129, 1082, 2004. [98] K. B. Wu, S. S. Hui, Microchim. Acta, 144, 131, 2004. [99] P.J. James, J.A. Elliott, T.J. Mcmaster, J.M. Newton, A.M.S. Elliott, S. Hannna, M.J. Miles, J. Mater. Sci., 35, 5111, 2000. [100] R. Bandyopadhyaya, E. Nativ-Roth, O. Regev, R. Yerushalmi-Rozen, Nano Lett., 2, 25, 2002. [101] F. Balavoine, P. Schultz, C. Richard, V. Mallouh, T.W. Ebbesen, CMioskowski, Angew.Chem. Int. Ed., 38, 1912, 1999. [102] B. R. Azamian, J. J. Davis, K. S. Coleman, C. B. Bagshaw, M. L. H. Green, J. Am. Chem. Soc., 124, 12664, 2002 [103] K.S Booksh, B.R. Kowalski, Anal. Chem., 66, 783A, 1994. [104] A.J. Cunningham, Introduction to Bioanalytical Sensors, Wiley, New York, 1998. [105] C. M. Moore, N. L. Akers, A. D. Hill, Z. C. Johnson, S. D. Minteer, Biomacromolecules, 5, 1241, 2004. [106] M. Zhang, A.Smith, W. Gorski, Anal. Chem., 76, 5045, 2004. [107] Peck Ritter 原著,李貽琳 等譯,生物化學 初版,高立,臺北,2001。 [108] J.F. Pankow, Chem. Res. Toxicol., 14, 1465, 2001. [109] Y. Lin, X. Cui, C. H. Yen, C. M. Wai, Langmuir, 21, 11474, 2005.
摘要: 本論文成功研究製備出以多層壁奈米碳管/全氟磺酸聚合物/酒精去氫酶(MWNTs/Nafion/ADH)以及MWNTs/Nafion兩種不同奈米複合材料薄膜修飾玻碳電極(GCE),證明具有偵測酒精、尼古丁的能力,並且成功的運用於真實樣品測量上。本論文第一部份以利用最適當的MWNTs/Nafion/ADH比例值,製備出修飾生物感測器電極,其中MWNTs具有優勢的電化學催化活性特性並且成為奈米導線複合材料,Nafion高分子薄膜則為電化學改良聚合黏結劑,而ADH則為一生物性觸媒,能以較低的活化能促進乙醇轉化成乙醛,還原型菸鹼醯胺腺嘌呤二核苷酸(NADH)為經由酒精氧化反應所產生的產物,MWNTs/Nafion薄膜所製備之電極對於NADH偵測,顯示出奈米碳管修飾薄膜具有能比Nafion修飾薄膜以更低的活化能氧化NADH。奈米碳管為圓管狀,並且其外圍直徑為60 nm,其長度可達數個μm。利用AFM觀察其表面形貌,進而了解ADH在MWNTs/Nafion薄膜中扮演的角色,並且得知ADH能吸附於奈米碳管之上,ADH均勻的分散在薄膜表面也可由AFM圖中所得。MWNTs/Nafion/ADH奈米複合材料修飾電極對於酒精化學物質,其奈米碳管展現出優勢的偵測表現是由循環伏安法及安培法所證明,由不同添加量的ADH對於酒精偵測之效能,選擇0.7 V的最適操作電位,得知添加6 mg/mL ADH具有較佳效能,並且當膜內ADH添加量上升其對應靈敏度也上升,其應答時間4秒,其靈敏度達830 nA/mM、線性範圍達0.1 mM、偵測極限達3 μM,最後利用此奈米複合材料薄膜進而測量市售台灣啤酒、高梁酒及紅葡萄酒等酒精產品之酒精濃度,證明能有效測量到酒精物質,並且有效排除其餘干擾物。 第二部分中以MWNTs/Nafion奈米複合材料薄膜對於尼古丁(nicotine)進行測量,結果顯示出奈米碳管可催化尼古丁物質之電化學反應,MWNTs/Nafion奈米複合材料修飾電極對於尼古丁的催化表現是由循環伏安法及安培法所證明,奈米碳管在Nafion高分子薄膜之中,依然可以表現出催化尼古丁的特性,選擇出最佳的pH 8.0值及最佳測量電位0.8 V作為測量尼古丁濃度,其奈米複合材料薄膜可以比Nafion薄膜材料提供更低的氧化電位作為偵測尼古丁的氧化反應,並且有抗電極毒化的能力,以最適值所製備出的MWNTs/Nafion奈米複合材料薄膜對於偵測nicotine具有靈敏度達19100 nA/mM,線性範圍達0.4 mM、偵測極限達1.7 μM,干擾物實驗中,證明甲醇不會因奈米碳管而催化,並得知甲醇反應物不會對於測量尼古丁氧化物質時造成干擾,因此提高MWNTs/Nafion薄膜具有做為尼古丁化學感測器的可行性,最後針對所修飾的電極做為測量PALL MALL香菸真實樣品尼古丁值為0.87 mg/pic。
An amperometric biosensor for the determination of ethanol has been constructed. It comprises a multiwalled carbon nanotubes (MWNTs) conduit, a Nafion binder, and an alcohol dehydrogenase (ADH) function. The measurement of ethanol is based on the signal produced by β-nicotinamide adenine dinucleotide (NADH), the product of the enzymatic reaction. The MWNTs are cylindrical with an outer diameter in the range 40-60 nm, an inner diameter in the range 2-5 nm, and a length of up to several micrometers. The homogeneity of the resulting nanobiocomposite film was characterized by atomic force microscopy (AFM). The performance of the MWNTs/Nafion/ADH nanobiocomposite modified glassy carbon electrode was examined using cyclic voltammetry and amperometry in presence of NADH and in the presence of ethanol. The electrocatalytic activity of MWNTs towards the oxidation of NADH has allowed an effective low-potential amperometric determination of ethanol. In the case of 6 mgmL-1 ADH, the MWNTs-Nafion-ADH nanobiocomposite film displayed a sensitivity of 830 nAmM-1, a linear range up to 0.1 mM, a detection limit of 3 μM , and a response time of about 4 s. The electrocatalytic activity of MWNTs towards the oxidation of nicotine has allowed an effective low-potential amperometric determination of nicotine. The MWNTs/Nafion nanocomposite film displayed a sensitivity of 19100 nA/mM, a linear range up to 0.4 mM, a detection limit of 1.7 μM. The system was applied to the determination of nicotine in tobacco sample (cigarette) and revealed a nicotine value of about 0.87 mg pic-1 at tobacco sample.
URI: http://hdl.handle.net/11455/3593
其他識別: U0005-2806200616071300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2806200616071300
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.