Please use this identifier to cite or link to this item:
標題: 球狀與非球狀粒子間交互作用之計算與研究
The Calculation and Study on the Interactions between Spherical and Nonspherical Particles
作者: 沈書弘
Shen, Shu-Hong
關鍵字: van der Waals interaction
van der Waals作用力
Hamaker approach
Hamaker approach
出版社: 化學工程學系所
引用: 1. Adamczyk Z. and T. G. M. van de Ven, “Deposition of Particles under External Forces in Laminar Flow through Parallel-Plate and Cylindrical Channels”, J. Colloid Interface Sci. 80, 340(1981). 2. Adamczyk Z. and T. G. M. van de Ven, “Deposition of Brownian Particles onto Cylindrical Collectors”, J. Colloid Interface Sci. 84, 497(1981). 3. Berthiaume M. D. and J. Jachowicz, “The Effect of Emulsifiers and Oil Viscosity on Deposition of Nonionic Silicone Oils from Oil-in-Water Emulsions onto Keratin Fibers”, J. Colloid Interface Sci. 141, 299(1991). 4. Bhattacharjee S. and A. Sharma, “Lifshitz-van der Waals Energy of Spherical Particles in Cylindrical Pores ”, J. Colloid Interface Sci. 171, 288(1995). 5. Bhattacharjee S. and A. Sharma, “Interaction Energy of Particles in Porous Media: New Deryaguin Type Approximation”, Langmuir 12, 5498(1996). 6. Bhattacharjee S. and A. Sharma, “Apolar, Polar, and Electrostatic Interactions of Spherical Particles in Cylindrical Pores ”, J. Colloid Interface Sci. 187, 83 (1997). 7. Brenner H. and D. W. Condiff, “Transport Mechanics in Systems of Orientable Particles. III. Arbitrary Particles ”, J. Colloid Interface Sci. 41, 228(1972). 8. Brenner H. and D. W. Condiff, “Transport Mechanics in Systems of Orientable Particles. IV. Convective Transport ”, J. Colloid Interface Sci. 47, 199(1974). 9. Brenner H. and L. J. Gajdos, “The Constrained Brownian Movement of Spherical Particles in Cylindrical Pores of Comparable Radius : Models of the Diffusive and Convective Transport of Solute Molecules in Membranes and Porous Media ”, J. Colloid Interface Sci. 58, 312 (1977). 10.Brenner H. and L. G. Leal, “A Model of Surface Diffusion on Solids ”, J. Colloid Interface Sci. 62, 238(1977). 11.Brenner H. and L. J. Gajdos, “London – van der Waals Forces and Torques Exerted on an Ellipsoidal Particle by a Nearby Semi-Infinite Slab”, Can. J. Chem. 59, 2004 (1981). 12.Bruch L. W., “Evaluation of the van der Waals Force for Atomic Force Microscopy”, Phys. Rev. 72, 033410 (2005). 13.Casimir H. B. G. and D. Polder, “The Influence of Retardation on the London-van der Waals Forces”, Phys. Rev. 73, 360 (1948). 14.Chang and Shen, “球狀粒子在圓柱孔隙中的分佈係數”, 化工 年會論文, (2005). 15.Condiff D. W. and H. Brenner, “Transport Mechanics in Systems of Orientable Particles”, Phys. Fluids 12, 539 (1969). 16.Deen W. M., “Hindered Transport of Large Molecules in Liquid-Filled Pores”, AIChE J. 33, 1409(1987). 17.Deen W. M., “Analysis of Transport Phenomena.” Oxford University Press, New York, 1998. 18.Gu Y. and D. Li, J. “The van der Waals Interaction between a Spherical Particle and a Cylinder ”, Colloid Interface Sci. 217, 60(1999). 19.Hamaker H. C., “The London-van der Waals Attraction between Spherical Particles”, Physica 4, 1058(1937). 20.Jachowicz J. and M. D. Berthiaume, “Heterocoagulation of Silicon Emulsions on Keratin Fibers ”, J. Colloid Interface Sci. 133, 118(1989). 21.Kirsch V. A., “The Effect of van der Waals'' Forces on Aerosol Filtration with Fibrous Filters”, Colloid J. 62, 714(2000). 22.Kirsch V. A., “Calculation of the van der Waals Force between a Spherical Particle and an Infinite Cylinder ”, Advances in Colloid and Interface Science 104, 311(2003). 23.London F., “Theory and Systematics of Molecular Forces ”, Z. Phys. 63, 245(1930). 24.Nitsche J. M., “Cellular Microtransport Processes Intercellular, Intracellular, and Aggregate Behavior.” Annu. Rev. Biomed. Eng. 1, 1999. 25.Nitsche J. M. et al., “A Transient Diffusion Model Yields Unitary Gap Junctional Permeabilities from Images of Cell-to-Cell Fluorescent Dye Transfer Between Xenopus Oocytes”, Biophys. J. 86, 2058(2004). 26.Robert A. K. and Bruno Linder, “The Effect of Dispersion Interaction on Nuclear Magnetic Shielding”, Journal of Magnetic Resonance. 1, 450(1969). 27.Rosenfeld J. I. and D. T. Wasan, “The London Force Contribution to the van der Waals Force between a Sphere and a Cylinder ”, J. Colloid Interface Sci. 47, 27(1974). 28.Papadopoulos K. D. and C. Kuo, “The van der Waals Interaction between a Colloid and its Host Pore ”, Colloids Surf. 46, 115(1990). 29.Walter J. M., “基礎物理化學.”, 1983. 30.Yonemoto T., “ A Perturbation Calculation of the Effect of Electric Interaction on Proton Magnetic Shielding”, Canadian Journal of Chemistry. 44, 223 (1966) 31. 32. .png
摘要: van der Waals作用力所造成的能量場簡稱vdW能量,它是由兩物體中原子對原子所產生的能量所組成,它包含斥力及吸引力,它對物體的移動速率、液體中的流動速率及流動通量…等有極大的影響,所以能應用於過濾、篩選、製造及醫學等領域。本研究主要針對球對平板、球對球及橢球對橢球這三種情形去計算並討論其vdW能量與各變數間的關係。通常在vdW能量計算上所採用的方法是Hamaker approach以及Lifshitz theory,本研究是採取Hamaker approach來計算物體間的vdW能量,此法是將兩物體中原子與原子間的vdW能量全部加總起來形成完整的物體與物體之間的vdW能量。 vdW能量值的大小會依據物質的形狀、特性和分隔距離這三種因素的改變而改變,上述的Hamaker approach主要是針對物體形狀與距離去計算兩者間的vdW能量,而物質的特性是藉由AHamaker(Hamaker 常數)來加以描述,它是決定vdW能量大小的重要因素,其值會隨著物體種類的不同而不同。 除了利用Hamaker approach來計算這三種情況的vdW能量 ,本研究還利用球對球的情形去近似球對平板以及橢球對橢球的情形去近似球對球和球對圓柱,並將近似所得的結果與真實情況相比較從中了解其差異性並探討是何原因造成兩者之間的差異。
The energy field induced by van der Waals force is termed van der Waals interaction, abbreviated as vdW in most literatures. It is composed of repulsive and attractive forces, and plays a significant role in researches in mobility of solutes in continuum, equilibrium partitioning, and mass transport. Thus its application covers a multitude of operations including filtration、seiving、adsorption and biomedical technologies. This study is aiming at calculations of vdW energy between (i) a sphere and a slab (ii) spheres (iii) spheroids. Correlation between the independent variables and the resulting interaction is also scrutinized. Per literatures, it is well accepted to use Hamaker approach or Lifshitz theory in the calculation of vdW interaction, here the former is attempted in this study. By integrating the vdW energy between atoms all over each volume, calculation of vdW energy between two objects is feasible. The magnitude of vdW energy between two objects depends on the geometric and physical characteristics of the objects in concern. In Hamaker approach, which is employed in this study, shape, volume and distance of between objects determine the vdW energy, while the physical characteristics of objects, majorly densities of objects, is identified with Hamaker constant, AHamaker. In addition to the computing work, the results are also justified by approximation between various cases with manipulations of variables. Deviations between the approximations and exact solutions are elucidated and possible causes are discussed. With this study, we are able to determine the vdW interaction between objects of arbitrary shapes exactly. The future work should expand to cover more geometric shapes and therefore the calculation of diffusivity and partitioning distribution coefficient.
其他識別: U0005-2807200613191300
Appears in Collections:化學工程學系所



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.