Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3595
標題: 由馬來醯胺製備二次非線性光學超樹枝狀聚天門冬亞醯胺
Synthesis and Properties of NLO Hyperbranched Polyaspartimides via Maleimides
作者: 劉岳樺
Liu, Yueh-Hua
關鍵字: maleimides
馬來醯胺
NLO
hyperbranched polymer
polyaspartimides
二次非線性光學
超樹枝狀高分子
聚天門冬亞醯胺
出版社: 化學工程學系所
引用: 1. J. Zyss, D. S. Chemla, Nonlinear Optical Properties of Organic Molecules and Crystals, 1987, I, p 2-1. 2. J. Y. Huang, The Operational Principles of Nonlinear Optical Characterizing Techniques., 1993. 3. B. F. Levine and G. F. Bethea, J. Chem. Phys., 1975, 63, 2666. 4. J. L. Ouder, J. Chem. Phys., 1977, 67, 446. 5. S. Pethkar, J. A. Dharmadhikari, A. A. Athawale, K. Vijayamohanan, R. C. Aiyer, J. Phys. Chem. B., 2001, 105, 5110. 6. H. Q. Xie, Z. H. Liu, X. D. Huang and J. S. Guo, Eur. Polym. J., 2001, 37, 497. 7. S. R. Marder and J. W. Perry, Science, 1994, 263, 1706. 8. S. R. Gilmour, A. Montgomery, S. R. Marder, L. T. Cheng, A. K. Y. Jen, Y. Cai, J. W. Perry, L. R. Dalton, Chem. Mater., 1994, 6, 1603. 9. G. Mohlmann, H. G. Horsthuis, A. Otomo, G. I. Stegeman, Polymer films obtained by DC-electric field and pure opticak Poling.1994 In: G. R. Mohlmann (ed) Nonlinear Optical properties of organic materials VⅡ. Proc SPIE, 2285, p 300. 10. G. Mohlmann, H. G. Horsthuis, A. Otomo, G. I. Stegeman, Polymer films obtained by DC-electric field and pure opticak Poling.1994 In: G. R. Mohlmann (ed) Nonlinear Optical properties of organic materials VⅡ. Proc SPIE, 2285, p 300. 11. R. Normandin, G. I. Stegeman, Appl. Phys. Lett., 1980, 36, 253. 12. R. Normandin, G. I. Stegeman, Appl. Phys. Lett., 1982, 40, 759. 13. P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, Phys. Rev. Lett., 1961, 7, 118. 14. P. D. Maker, R. W. Terhune, M. Nisenoff, C. M. Savage, Phys. Rev. Lett., 1962, 8, 21. 15. B. L. Davydov, L. D. Dekacheva, V. V. Dunina, M. E. Zhabotinskii, V. F. Zolin, L. G. Koreneva, M. A. Samokhina. JEPT Lett., 1970, 12, 16. 16. E. E. Havinga and P. V. Pelt, Mol. Cryst. Liq. Cryst., 1979, 52, 145. 17. Y. Q. Shi, C. Zhang, H. Zhang, J. H. Bechtel, L. R. Dalton, B. H. Robinson, W. H. Steier, Science, 2000, 228, 119. 18. L. R. Dalton, Opt. Eng., 2000, 39, 589. 19. A. K. Y. Jen, K. Y. Wang, V. P. Rao, K. Drost, Y. M. Cai, J. Electron. Mater., 1994, 23, 653. 20. H. Saadeh, A. Gharari, D. Yu, L. P. Yu, Macromolecules, 1997, 30, 5403. 21. H. Saadeh, D. Yu, L. M. Wang, L. P. Yu, J. Mater. Chem., 1999, 9, 1865. 22. M. Becker, L. Sapochak, L. R. Dalton, W. Steier, A. K. Y. Jen, Chem. Mater, 1994, 6, 104. 23. Z. Li, Y. Zhao, J. Zhou, Y. Shen, Eur. Polym. J., 2000, 36, 2417. 24. C. Xu, B. Wu, L. R. Dalton, Y. Shi, P. M. Ranon, and W. H. Steier, Macromolecules, 1992, 25, 6714. 25. B. K. Mandal, J. Kumar, J. C. Huang, S. K. Tripathy, Appl. Phys. Lett., 1991, 58, 2459. 26. H. Q. Xie, X. D. Huang, and J. S. Guo, J. Appl. Polym. Sci., 1996, 60, 537. 27. R. J. Jeng, Y. M. Chen, A. K. Jain, J. Kumar, S. K. Tripathy, USP5433895, 1995. 28. G. H. Hsiue, J. K. Kuo, R. J. Jeng, J. I. Chen, X. L. Jiang, S. Marturunkakul, J. Kumar, and S. K. Tripathy, Chem. Mater., 1994, 6, 884. 29. G. H. Hsiue, J. K. Kuo, R. J. Jeng, T. H. Suen, R. R. Lee, J. T. Shy, and Y. L. Liu, Nonlinear Optics, 1996, 15, 367. 30. Y. Wang, X. J. Wang, X. H. Chuai, N. Fu, Z. C. Cui, M. B. Yi, D. M. Zhang, B. Yang, Polym. Int., 2004, 53, 1106 31. S. Maaref, Z. Roz, S. S. J. Sun, K. Seo, K.Winston, C. E. Bonner, J. Appl. Polym. Sci., 2004, 92, 317 32. R. K. Singh, J. O. Stoffer, T. D. Flaim, D. B. Hall, J. M. Torkelson, J. Appl. Polym. Sci., 2004, 92, 770 33. R. J. Jeng, C. C. Chang, C. P. Chen, C. T. Chen, W. C. Su, Polymer, 2003, 44, 143 34. Z. Li, A. Qin, J. W. Y. Lam, Y. Dong, Y. Dong, C. Ye, I. D. Williams, and B. Z. Tang, Macromolecules, 2006, 39, 1436. 35. Y. Zhang, T. Wada, and H. Sasabe, Polymer, 1997, 38, 2893. 36. C. Gao, D. Yan, Prog. Polym.Sci., 2004, 29, 183. 37. M. Jikei, M. A. Kakimoto, Prog. Polym.Sci., 2001, 26, 1233. 38. R. H. Kienle, A. G. Hovey, J. Am. Chem. Soc., 1929, 51, 509. 39. P. J. Flory, J.Am.Chem.Soc., 1941, 63, 3083. 40. Y. H. Kim, O. W. Webster, Polymer Preper , 1988, 29, 310. 41. Y. H. Kim, O. W. Webster, J. MAm.Chem.Soc., 1990, 112, 4592. 42. M. Jikei, S. H. Chon, M. Kakimoto, S. Kawauchi, T. Imase and J. Watanebe, Macromlecules, 1999, 32, 2061. 43. J. Hao, L. Jiang, X. Cai, Polymer, 1996, 37, 3721. 44. R. Chandra, L. Rajabi, J. Macromol Sci., Rev Macromol Chem 1997, C37, 61. 45. V. L. Bell, P. R. Young, J. Polym. Sci., Polym. Chem., 1986, 24, 2647. 46. C. S. Wang, H. J. Hwang, Polymer, 1996, 37, 499. 47. D. J. Liaw, B. Y. Liaw, J. J. Chen, Polymer, 2001, 42, 867. 48. C. S. Wu, Y. L. Liu, Y. S. Chiu, Polymer, 2002, 43, 1773. 49. Y. L. Liu, S. H. Tsai, C. S. Wu, R. J. Jeng, Journal of Polymer Science:Part A:Polymer Chemistry, 2004, 42, 5921. 50. J. Y. Do, S. K. Park, J. J. Ju, S. Park, M. H. Lee, Macromol. Chem. Phys., 2003, 204, 410. 51. S. H. Kang, J. Luo, H. Ma, R. R. Barto, C. W. Frank, L. R. Dalton, and A. K. Y. Jen, Macromolecules, 2003, 36, 4355. 52. J. Y. Do, J. J. Ju, Macromol. Chem. Phys., 2005, 206, 1326. 53. Z. Li, A. Qin, J. W. Y. Lam, Y. Dong, Y. Dong, C. Ye, I. D. Williams, and B. Z. Tang, Macromolecules, 2006, 39, 1436. 54. R. D. Miller, D. M. Burland, M. Jurich, V. Y. Lee, C. R. Moylan, J. I. Thackara, R. J. Twieg, T. Verbiest, and W. Volksen, Macromolecules, 1995, 28, 4970. 55. W. Wu, D. Wang, Peiwangzhu, P. Wang, C. Ye, Journal of Polymer Science:Part A:Polymer Chemistry, 1999, 37, 3589. 56. H. Saadeh, A. Gharavi, D. Tu, L. P. Yu, Macromolcules, 1997, 30, 5403. 57. E. S. Balcerzak, E. Grabiec, D. Sek, A. Miniewicz, Polym. J., 2003, 35, 851. 58. W. Shi, C. S. Fang, Q. W. Pan, Q. T. Gu, D. Xu, H. Z. Wei, J. Z. Yu, Optics and Lasers in Engineering., 2000, 33, 21. 59. W. Shi, C. S. Fang, Q. W. Pan, Q. T. Gu, D. Xu, H. Hu, H. Z. Wei, J. Z. Yu, Solid State Communication.., 2000, 116, 67. 60. W. Shi, C. S. Fang, Y. Sui, J. Yin, Q. W. Pan, Q. T. Gu, D. Xu, H. Hu, H. Z. Wei, J. Z. Yu, Optics Communication.., 2000, 183, 299.
摘要: 本研究合成出一系列二次非線性光學超樹枝狀高分子( Hyperbranched polymer ),利用 A2 + B3 單體聚合的形式,經由 Michael addition 反應得到具有機可溶性之超樹枝狀高分子。實驗首先合成三馬來醯胺單體,結構中富含氟原子,藉由氟原子的導入能增加材料的熱穩定性及溶解性,並降低光學損失( Optical loss );而發色團基使用自行合成的 DAC ( Bis(4-aminophenyl(4-(4-nitrophenyl)-diazenyl)phenyl)amine ) 及 DNDA (2,4-Diamino-4’-(4-nitrophenyl-diazenyl)azobenzene ) 兩種發色團基。反應聚合之超樹枝狀聚天門冬亞醯胺因其特有的三維立體分子結構,能有效的將結構當中的發色團基分子彼此區隔開來,避免產生聚集的現象,能有效的提升材料的光電係數,並降低光學損失。 實驗中利用 FT-IR 光譜圖證明反應成功的進行。以 DMF 為溶劑,求得固有黏度介於0.02至0.18 dL/g 之間。所合成之高分子均可溶於 NMP、DMF、DMAc、DMSO 等溶劑中。熱性質方面, Td 介於301至342℃之間。在光電檢測方面,以即時接觸式極化( In-situ contact poling )裝置監測光電係數與施加電壓之關係,光電係數值 r33 約為7.2至9.2 pm/V 之間,光學損失約為6.6至8.1 dB/cm 之間,且在80℃下96 及72小時之長時間熱穩定性,仍然維持在 80% 以上。由於具三維立體結構的超樹枝狀高分子具有良好的透光性,且成膜性佳、易於加工,未來這種不同於傳統線性高分子的新型材料,會在二次非線性光學領域中扮演更重要的角色。
In this study, novel nonlinear optical( NLO ) hyperbranched polyaspartimides were successfully synthesized via Michael addition reaction from trimaleimide with two types of chromophore DAC( Bis(4-aminophenyl(4-(4-nitrophenyl)-diazenyl)phenyl)amine ) and DNDA (2,4-Diamino-4'-(4-nitrophenyl-diazenyl)-azobenzene ), and using p-toluenesulfonic acid as catalyst. The starting materal of trimaleimide ( 1,1-Tris[4-(4-maleimide-2- trifluoromethyl-phenoxy) -phenyl]ethane ) possesses fluorine atoms from nucleophilic substitution. By incorporating fluorine-rich components into the hyperbranched polymers, increased thermal stability, organic solubility, and decreased optical loss would be imparted. Unlike traditional linear derivatives, highly branched architecture consists of universally three-dimensional and void-rich topological structure. Therefore, the spatial separation of chromophores endows the polymers with favorable site-isolation effect and avoids chromophoric aggregation. All reactions and materials were confirmed by FT-IR, NMR, and elemental analysis. All of the obtained polymers exhibited good solubility in a variety of polar solvents (NMP, DMF, DMAc, and DMSO). The 5% weight loss temperatures were in range of 301-342℃ . After in-situ poling process, the r33 coefficients of HB-DAC-12 was 9.2 pm/V , optical loss was 8.1 dB/cm. In terms of temporal stability at 80℃, the r33 value retains 80% of its original value for all the samples. Based on the above, this series of hyperbranched polyaspartimides are of potential for photonic applications.
URI: http://hdl.handle.net/11455/3595
其他識別: U0005-2808200613113900
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2808200613113900
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.