Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3596
標題: 新型活性聚合起始劑之製備與其活性自由基聚合應用
Synthesis and Application of Novel Peroxide Ester Initators for Living Free Radical Polymerization
作者: 吳旻諭
Wu, Min-Yu
關鍵字: Living polymerization, Azetidine-2,4-dione
活性聚合
TEMPO
MMT
Nanocomposite
polystyrene
起始劑
聚苯乙烯
蒙脫土
奈米複材
出版社: 化學工程學系所
引用: 1. E. L. O'brien, F. M. Beringer, R. B. Mesrobian, J. Org. Chem. , 1957, 79, 6238. 2. E. L. O'brien, F. M. Beringer, R. B. Mesrobian, J. Org. Chem. , 1958, 81, 1506. 3. F. C. Baines, J. H. Grezlak, A.V. Tobolsky, J. Polym. Sci. Polym, Chem., 1969, 7, 3297. 4. E. L. O'brien, F. M. Beringer, R. B. Mesrobian, J. Org. Chem., 1957, 79, 6238. 5. E. L. O'brien, F. M. Beringer, R. B. Mesrobian, J. Org. Chem., 1958, 81, 1506 6. B. M. Baysal, J. Appl. Polym. Sci., 1996, 60, 1369. 7. D. S. Masterson, J. Am. Chem. Soc., 2004, 126, 720. 8. N. Uyanik, H. Yildirim, N. Kizilcan, A. Akar, Angew. Makromol. Chem., 1991, 191, 1. 9. Y. Yaci, H. Yildirim, E. Altun, B. M. Baysal, J. Appl. Polym. Sci., 1992, 44, 367. 10. Y. Yagci, M. Acar, G. Hizal, H. Yildirim, B. M. Baysal, Angew. Makromol. Chem., 1987, 154, 169. 11. Y. Yagi, H. Yildirim, E. Altun, B. M. Baysal, J. Appl. Polym. Sci., 1992, 45, 375. 12. A. J. Pasquale, T. E. Long, Macromolecules, 1999, 32, 7954. 13. J. S. Wang, K. Matyjaszewski, J. Am. Chem. Soc., 1995, 117, 5614. 14. J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jefery, Macromolecules, 1998, 31, 5559. 15. H. Yildirim, B. M. Baysal, Angew. Makromol. Chem., 1990, 181, 103. 16. I. Yilgör, B. Baysal, Angew. Makromol. Chem., 1985, 186, 463. 17. D.H. Solomo, E. Rizzardo, P. Cacioli, US Patent, 1985, 4, 581 18. R. P. N. Veregin, M. K. Georges, G. K. Hamer, P.M. Kazmaier, Macromolecules, 1995, 28, 4391 19. R. P. N. Veregin, M. K. Georges, G. K. Hamer, P.M. Kazmaier, Macromolecules, 1993, 26, 2987. 20. D. Mardare, T. Shigemoto, K. Matyjaszewski, Polymer Preprints, 1994, 35, 557. 21. C. J. Hawker, J. Am. Chem. SOC., 1994, 116, 11185. 22. D. Greszta, K. Matyjaszewski, Macromolecules, 1996, 29, 7661. 23. C. J. Hawker, Acc. Chem. Res., 1997, 30, 373. 24. C. J. Hawker, A. W. Bosman, E. Harth, Chem. Rev., 2001, 101, 3661. 25. M. K. Georges, N. A. Listigovers, P. G. Odell, B. Keoshkerian, Marcomolecules, 1996, 29, 8992. 26. G. G. Barclay, M. King, R. Sinta, Polymer Preprinst, 1997, 38,902. 27. X. Chen, B. Gao, K. Jorgen, B. Walther, Polymer, 1998, 39, 911. 28. S. Kobatake, H. J. Harwood, R. P. Quirk, Macromolecules, 1997, 30, 4238. 29. T. Emrick, W. Hayes, J. M. J. Frechet, J. Polym. Sci. Polym. Chem., 1999, 37, 3748. 30. C. K. Kim, E. S. Song, H. J. Kim, J. K. Kim, Y. C. Kim, C. Kim, Poly. Mater. Sci. Eng., 2004, 91, 536. 31. M. R. Leduc, C. J. Hawker, J. Dao, J. M. J. Frechet, J. Am. Chem. Soc., 1996, 118, 11111. 32. M. E. Mackay, Y. Hong, M. Jeong, S. Hong, T. P. Russell, C. J. Hawker, R. Vestberg, J. F. Douglas, Langmuir, 2002, 18, 1877. 33. M. E. Mackay, Y. Hong, M. Jeong, B. M. Tande, N. J. Wagner, S. Hong, S. P. Gido, R. Vestberg, C. J. Hawker, Macromolecules, 2002, 35, 8391. 34. D. M. Brian, R. L. Jeremy, E. L. Timothy, Macromolecules, 2004, 37, 9331 35. K. Matyjaszewski, T. Shigemoto, J. M. J. Frechet, M. Leduc, Macromolecules, 1996, 29, 4167. 36. R. M. Ho, Y. W. Chiang, C. C. Tsai, C. C. Lin, B, T. Ko, B. H. Huang, J. Am. Chem. Soc., 2004, 126, 2704. 37. J. C. Hodges, L. S. Harikrishnan, S. Ault-Justus, J. Comb. Chem., 2000, 2, 80. 38. R. Francis, D. Taton, J. Logan, P. Masse, Y. Gnanou, R. S. Duran, Macromolecules, 2003, 36, 8253. 39. M. Husseman, E.E. Malmstron, M. McNamara, M. Mate, D. Mecerreyes, D.G. Benoit, J. L. Hedrick, P. Manasky, E. Huang, T.P. Russell, C.J. Hawker, Macromolecules, 1999, 32, 1424. 40. A.W. Bosman, A. Heumann, G. Klaerner, D. Benoit, J.M. J. Frechet, C.J. Hawker, J. Am. Chem. Soc., 2001, 123, 6461. 41. M. K. Georges, K. A. Moffat, R. P. N. Veregin, P. M. Kazmaier, G. K. Hamer, Poly. Mater. Sci. Eng., 1993, 69, 305. 42. F. D'Agosto, R. Hughes, M. T. Charreyre, C. Pichot, R. G. Gilbert, Macromolecules, 2003, 36, 621. 43. T. Prodpan, V.L. Dimonie, E. D. Sudol, M. El-Asser, Poly. Mater. Sci. Eng., 1999, 80, 534. 44. A. Akelah, A. Moet, J. Mater. Sci., 1996, 31, 3589. 45. U. Velten, R. A. Shelden, W. R. Caseri, U. W. Suter, Y. Li, Colloids and Surfaces.A, 1999, 154, 87. 46. H. G. G. Dekking, J. Appl. Polym. Sci., 1967, 11, 23. 47. C. Kato, K. Kuroda, H. Takahara, Clays Clay Miner., 1981, 29, 294. 48. A. Moet, A. Akelah, Materials Letters, 1993, 18, 97. 49. L. P. Meier, R. A. Shelden, W. R. Caseri, U. W Suter, Macromolecules, 1994, 27, 1637. 50. L. Biasci, M. Aglietto, G Ruggeri, F. Ciardelli, Polymer, 1994, 35, 3296. 51. J. G. Doh, I. Cho, Polymer Bulletin, 1998, 41, 511. 52. M. Laus, M. Camerani, M. Lelli, K. Sparnacci, F. Sandrolini, J. Mater. Sci., 1998, 33, 2883. 53. M. W. Weimer, H. Chen, E. P. Giannelis, D. Y. Sogah, J .Am. Chem. Soc., 1999, 121, 1615. 54. X. Fu, S. Qutubuddin, Materials Letters, 2000, 42, 12. 55. X. Fu, S. Qutubuddin, Polymer, 2001, 42, 807. 56. D. Jianbo, Y. S. Dotsevi, Macromolecules, 2006, 39, 1020. 57. E. P. Giannelis, Advanced Materials, 1996, 8, 29. 58. T. Fukuda, A. Goto, K. Ohno, Y. Tsujii, J. Am. Chem. Soc., 1998, 120, 9159. 59. T. Fukuda, T. Terauchi, A. Goto, K. Ohno, Y. Tsujii, T. Miyamoto, Macromolecules, 1996, 29, 6393. 60. T. Saegusa, Pure Apppl. Chem., 1995, 67, 1965. 61. Zhang Jinguo, Polym Degrad Stab,1999,91,358 62. Wang Dongyan, Polym Degrad Stab. 2003, 80, 171
摘要: 本研究為開發一新型活性聚合起始劑,並將其應用於聚苯乙烯(PS)之活性自由基高分子聚合(living free radical polymerization, LFRP)反應。利用實驗室開發的azetidine-2,4-dione (Aze)官能基為起始物,加入t-butyl hydroperoxide (TBHPO)過氧化物進行開環反應,生成過氧化酯(Peroxide Ester)中間體,再導入2,2,6,6-tetramethylpiperidinoxy free radical (TEMPO) 形成穩定之活性聚合起始劑。藉由過氧化物結構之改變,及起始端與可逆自由基抑制機制導入,製備出單一分子量分佈之聚苯乙烯。此外實驗中將探討單官能基(Mono-azeidine-2-4-dione, Mono-Aze)與雙官能基(Bis-azeidine-2-4-dione, Bis-Aze)活性聚合起始劑之動力學常數與分子量成長。由結果發現分子量皆呈現線性成長,其動力學常數分別為4.1×10-5 sec-1與4.6×10-5 sec-1;在相同的轉化率下,由Bis-Aze所聚合之聚苯乙烯分子量為Mono-Aze的兩倍,且分子量分佈依舊維持單一分子量分佈分別為1.45與1.3。 再者利用Bis-one-TEMPO系列官能基之反應選擇性,導入一具備芳香族及脂肪族雙胺化合物,生成Bis-one-amine化合物,利用鹽酸酸化後形成四級胺鹽之Bis-one-amine-salt界面活性劑,以用離子交換的方法插層進入蒙脫土中,其結果可由XRD觀察到層間距增加為38Å且有機/無機比為52%所證實。在聚苯乙烯複合材料方面,將先前所改質之有機化蒙脫土,在不同時間及濃度下探討聚苯乙烯分子量成長對於蒙脫土層間距之影響。由TEM結果顯示,當蒙脫土/苯乙烯的比例為3/97,反應時間兩小時,蒙脫土呈現部分脫層與部分撐層(15-19.6nm)型態,此時分子量約為11000;當比例降為1/999,反應時間8小時,聚苯乙烯分子量成長至86000,此聚苯乙烯複合材料之機械強度可提升至14.5MPa。
In this work, we developed a novel living free radical polymerization (LFRP) initiator which consists of azetidine-2,4-dione (Aze) functional group as the starting material. The Aze functional group was first reacted with t-butyl hydroperoxide (TBHPO) to form peroxide ester intermediate after ring opening reaction and subsequently combined with 2,2,6,6-tetramethylpiperidinoxy (TEMPO) to build a stable LFRP initiator. By incorporating hydroperoxide into structure and reversible free radical composed of restrained and promotive effect, the molecular distribution can be effortlessly controlled. Furthermore, two types of LFRP initiators were utilized to analyze the kinetic constant and evolution of molecular weight. The kinetic constants of Mono-TEMPO-initated and Bis-TEMPO-initated polymerizations were 4.110-5 sec-1 and 4.610-5 sec-1, respectively. Both Mono-TEMPO-initated and Bis-TEMPO-initated polymers still maintained narrow polydispersity in the range of 1.3-1.45. Moreover, the molecular weight of Bis-TEMPO-initated polymer was two times larger than that of Mono-TEMPO-initated polymer under the same conversion as anticipated. Montmorillonite (MMT) is the most commonly used layered silicate with high aspect ratio. Employing suitable surfactants or polymers could achieve different natures of morphologies: intercalated, intercalated-and-flocculated, and exfoliated. Therefore, an initator, Bis-one-amine-salt surfactant was incorporated into MMT and the XRD spectrum indicated that the d-spacing of modified MMT was enlarged to 38Å. The initiators could be tethered to the galleries of layered MMT hosts followed by intercalation and polymerization of styrene gave directly a dispersed polystyrene-MMT nanocomposite. The XRD of nanocomposite revealed that the layers were exfoliated as evidenced by the absence of any diffraction peak. Moreover, the transmission electron microscopy (TEM) exhibited exfoliated and intercalated morphology. As the molecular weight of polystyrene approached to 86000, a tensile strength of 14.5Mpa was achieved.
URI: http://hdl.handle.net/11455/3596
其他識別: U0005-2908200615410300
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2908200615410300
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.