Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3602
標題: 聚乙烯醇/二氧化矽奈米複合材料之製備與物性分析
Preparation and Physical Properties of Poly(vinyl alcohol)/Silica Nanocomposites
作者: 王孝民
Wang, Xiao-Min
關鍵字: PVA
聚乙烯醇
silica
nanocomposite
二氧化矽
奈米複合材料
出版社: 化學工程學系所
引用: 參 考 文 獻 1.周森, “複合材料-奈米‧生物科技-”, 全威圖書有限公司,台北,第217頁 (2002) 2.林唯芳, “有機無機奈米材料”, 塑膠資訊, 第60期, 第4頁 (2001) 3.張豐志, “應用高分子手冊”, 五南出版社, 台北, 第353頁 (2003) 4.Hasegawa, N.; Okamoto, H.; Kato, M.; Usuki, A., Journal of Applied Polymer Science, 78, 1918 (2000) 5.Ochi, M.; Takahashi, R.; Terauchi, A., Polymer, 42, 5151 (2001) 6.Liu, Y. L.; Hsu, C. Y.; Hsu, K. Y., Polymer, 46, 1851 (2005) 7.Oh, K. S.; Han, S. K.; Choi, Y. W.; Lee, J. H.; Lee, J. Y.; Yuk, S. H., Biomaterials, 25, 2393 (2004) 8.Young, T. H.; Cuang, W. Y.; Hsieh, M. Y.; Chen, L. W.; Hsu, J. P., Biomaterials, 23, 3495 (2002) 9.Kobayashi, M.; Toguchida, J.; Oka, M., Biomaterials, 24, 639 (2003) 10.Brazel, C. S.; Peppas, N. A., Polymer, 40, 3383 (1999) 11.丁原傑, “無機有機混合溶凝膠配置與應用”, 化工,第46卷,第5期,第63頁 (1999) 12.周禮君,田珮, “有機矽氧烷基前驅物衍生的有機-無機混成溶凝膠材料”, 化工技術,第8卷,第5期,第152頁 (2000) 13.李佳融, “以溶凝膠法製作SiO2奈米多孔質載體之加工特性的初步探討”, 國立交通大學機械工程研究所碩士論文 (2000) 14.Stober, W.; Fink, A., Journal of Colloid and Interface Science, 26, 62 (1968) 15.Helden, A. K.; Jansen, J. W.; Vrij, A., Journal of Colloid and Interface Science, 81, 354 (1981) 16.Nishyama, N.; Horie, K., Journal of Applied Polymer Science, 34, 1619 (1987) 17.Nishyama, N.; Asakura, T.; Horie, K., Journal of Colloid and Interface Science, 124, 14 (1987) 18.Bogush, G. H. ; Tracy, M. A.; Zukoski, C. F., Journal of Non-Crystalline Solids, 104, 95 (1988) 19.Wang, C.; Zhang, Y .; Dong, L .; Fu, L.; Bai, Y.; Li, T.; Xu, J.; Wei, Y., Chemistry of Materials, 12, 3662 (2000) 20.Vasconcelos, D. C. L.; Campos , W. R.; Vasconcelos , V.; Vasconcelos, W. L., Materials Science and Engineering A, 334, 53 (2002) 21.Kim, K. S.; Kim, J. K.; Kim, W. S., Ceramics International, 28, 187 (2002) 22.Park, S. K.; Kim, K. D.; Kim, H. T., Colloids and Surfaces A : Physicochemical and Engineering Aspects, 197, 7 (2002) 23.Wang, W.; Gu, B.; Liang, L.; Hamilton, W., Journal of Physical Chemistry B, 107, 3400 (2003) 24.Rao, K. S.; El-Hami, K.; Kodaki, T.; Matsushige, K.; Makino, K., Journal of Colloid and Interface Science , 289, 125 (2005) 25.Corradi, A. B. ; Bondioli, F.; Ferrari, A. M.; Focher, B.; Leonelli, C., Powder Technology, 167, 45 (2006) 26.Kuniyoshi, M.; Takahashi, M.; Tokuda, Y.; Yoko, T., Journal of Sol-Gel Science and Technology, 39, 175 (2006) 27.Yang, D.; Xu, Y.; Wu, D.; Sun, Y., J., Journal of Physical Chemistry C, 111, 999 (2007) 28.Suzuki, F.; Nakane, K.; Pilo, J. S., Journal of Materials Science, 31, 1335 (1996) 29.Yano, S.; Iwata, K.; Kurita, K., Materials Science and Engineering C, 6 , 75 (1998) 30.Nakane, K.; Yamashita, T.; Iwakura, K.; Suzuki, F., Journal of Applied Polymer Science, 71, 133 (1999) 31.Shao, C.; Kim, H. Y.; Gong, J.; Ding, B.; Lee, D. R.; Park, S. J., Materials Letters, 57, 1579 (2003) 32.Kotoky, T.; Dolui, S. K., Journal of Sol-Gel Science and Technology 29, 107 (2004) 33.Kariduraganavar, M. Y.; Kulkarni, S. S.; Kittur, A. A., Journal of Membrane Science, 246, 83 (2005) 34.Peng, F.; Lu, L.; Sun, H.; Wang, Y.; Liu, J.; Jiang, Z., Chemistry of Materials, 17, 6790 (2005) 35.Peng, Z.; Kong, L.X.; Li, S.D., Polymer , 46, 1949 (2005) 36.Peng, Z.; Kong, L.X.; Li, S.D., Synthetic Metals, 152, 25 (2005) 37.Bandyopadhyay, A.; Sarkar, M. D.; Bhowmick, A. K., Journal of Materials Science, 40, 5233 (2005) 38.Peng, Z.; Kong, L. X.; Li, S. D., Journal of Applied Polymer Science, 96, 1436 (2005) 39.Guo, R.; Hu, C.; Pan, F.; Wu, H.; Jiang, Z., Journal of Membrane Science, 281, 454 (2006) 40.Bandyopadhyay, A.; Sarkar, M. D.; Bhowmick, A. K., Journal of Materials Science, 41, 5981 (2006) 41.Martinelli, A.; Matic, A.; Jacobsson, P.; Borjesson, L.; Navarra, M.A.; Fernicola, A.; Panero, S.; Scrosati, B., Solid State Ionics, 177, 2431 (2006) 42.Jia, X.; Li, Y.; Cheng, Q.; Zhang, S.; Zheng, B., European Polymer Journal, 43, 1123 (2007) 43.Guo, R.; Ma, X.; Hu, C.; Ji, Z., Polymer, 48, 2939 (2007) 44.Zhang, Q. G.; Liu, Q. L.; Jiang, Z. Y.; Chen, Y., Journal of Membrane Science, 287, 237 (2007) 45.Matsoukas, T.; Gulari, E., Journal of Colloid and Interface Science, 124, 252 (1988) 46.Shaw, D. J., Introduction to Colloid and Surface Chemistry, 4th Edition, Butterworth Heinemann, Oxford, 1992, p174 47.Fu, X. A.; Qutubuddin, S., Colloids and Surfaces A:Physicochemical and Engineering Aspects, 178, 151 (2001) 48.Wu, Z.; Xiang, H.; Kim, T.; Chun, M. S.; Lee, K., Journal of Colloid and Interface Science, 304, 119 (2006) 49.Que, W.; Hu, X., Journal of Sol-Gel Science and Technology, 28, 319 (2003) 50.Schramm, C.; Binder, W. H.; Tessadri, R., Journal of Sol-Gel Science and Technology, 29, 155 (2004) 51.Peppas, N. A.; Hansen, P. J., Journal of Applied Polymer Science, 27, 4787 (1982) 52.Hickey, A. S.; Peppas, N. A., Journal of Membrane Science, 107, 225 (1995) 53.Halboth, H.; Rehage, G., Angewandte Makromolekulare Chemie, 38, 111 (1974) 54.Liu, Y.; Ren, W.; Zhang, L.; Yao, X., Thin Solid Films, 353, 124 (1999)
摘要: 本研究利用Tetraethyl Orthosilicate (TEOS) 為前驅物,製備二氧化矽,再利用二氧化矽改質劑GT進行二氧化矽表面改質與聚乙烯醇經溶液法與原位法製備聚乙烯醇/二氧化矽奈米複合材料,實驗中改變二氧化矽含量探討二氧化矽對聚乙烯醇的物性影響,以及二氧化矽經GT改質後對PVA/SiO2複材的影響。 將所製得之PVA/SiO2複材經DSC分析發現PVA的玻璃轉移溫度隨著二氧化矽含量增加而增加,當複材中的二氧化矽達20 wt%時,酸性原位法所製得之複材其玻璃轉移溫度上升了6.9℃,在鹼性原位法與溶液法分別增加了6.1℃、2.9℃,由於複材中的二氧化矽與PVA產生氫鍵作用力,限制了PVA分子鏈的移動,當複材中的二氧化矽含量增加時,高分子鏈移動需要更多的能量,因此造成玻璃轉移溫度的上升。將複材中的二氧化矽經GT改質後由於二氧化矽表面的OH基增加,可增加二氧化矽與PVA間的氫鍵作用力造成複材的玻璃轉移溫度再次提升,在酸性原位法所製得的複材中,使用改質二氧化矽比未改質二氧化矽其玻璃轉移溫度增加了1.0℃,在鹼性原位法與溶液法分別增加了5.3℃、2.7℃。 在TGA分析發現PVA的5 %重量損失之熱裂解溫度隨著二氧化矽含量增加而增加,當複材中的二氧化矽達20 wt%時,酸性原位法所製得之複材其5 %重量損失的熱裂解溫度上升了17.8℃,在鹼性原位法與溶液法分別增加了11.7℃、8.9℃,由於複材中的二氧化矽限制了PVA分子鏈的熱運動,造成5 %重量損失的熱裂解溫度上升。將複材中的二氧化矽經GT改質後,複材的5 wt% loss的熱裂解溫度也再次提升,在酸性原位法所製得的複材中,使用改質二氧化矽比未改質二氧化矽其5 %重量損失的熱裂解溫度增加了5.8℃,在鹼性原位法增加了14.7℃,在溶液法中由於複材吸附的水分增加使得5 %重量損失的熱裂解溫度下降了4.0℃。 XRD分析顯示,PVA的結晶度隨著二氧化矽含量增加而下降,複材中的二氧化矽達30 wt%時,酸性原位法所製得之複材其結晶度下降了18.8%,在鹼性原位法與溶液法分別下降了16.9%、12.7%,由於二氧化矽與PVA產生氫鍵,造成PVA分子鏈間的交互作用降低,使得PVA的結晶度下降。將複材中的二氧化矽經GT改質後,由於二氧化矽表面的OH基增加與PVA產生更多氫鍵使PVA的結晶度再次下降,在鹼性原位法與溶液法所製得的複材中,使用改質二氧化矽比未改質二氧化矽其結晶度分別下降了3.7%,、1.4%,但在酸性原位法中卻上升了3.3% 在FESEM斷裂面形態分析顯示,複材二氧化矽含量達30wt%時,二氧化矽粒子仍均勻的分散在聚乙烯醇基材中,無聚集的情況發生,由於二氧化矽在聚乙烯醇中有良好的分散性,因此將複材中的二氧化矽經GT改質後對二氧化矽的分散性無明顯的改變,二氧化矽粒子直徑在5 nm至20 nm左右。
In this research, we used tetraethyl orthosilicate (TEOS) as the precursor to fabricate SiO2, and then we used the SiO2 modifier - GT to perform surface modification on SiO2; further, we used solution blend method and in-situ method to produce the nanocomposites of PVA/ SiO2 from PVA. In this study, we varied the content of SiO2 to discuss how SiO2 affected the PVA's physical properties and after modifying SiO2 by GT to investigate the effects to PVA/SiO2 composites. We analyzed the fabricated PVA/SiO2 composites via DSC and found PVA's glass transition temperatures enhanced with the increase of the content of SiO2. When the content of SiO2 in the composites reached to 20 wt%, the glass transition temperature of the composites produced by in-situ in acid condition enhanced by 6.9 ℃, and it enhanced by 6.1 ℃ and 2.9 ℃ respectively in the in-situ in basic condition and solution blend method. Due to SiO2 and PVA in the composites brought the hydrogen bonding interaction to restrain PVA's chains movemwnt. When the content of SiO2 increased, polymer chains needed more energy to mobilize, so we observed the increase of glass transition temperature. After modifying SiO2 in the composites by GT, due to the OH groups on SiO2 increased, we could enhance the hydrogen bonding interaction between SiO2 and PVA to lead the glass transition temperature of the composites to increase again. In the composites made by in-situ in acid condition, the modified SiO2 had 1.0 ℃ more than the unmodified SiO2 in the comparison of the glass transition temperature, and it increased by 5.3 ℃ and 2.7 ℃ respectively in the in-situ in basic condition and solution blend method. In the TGA analysis, we found that PVA's thermal decomposition temperature at 5 % weight loss increased with the content of SiO2. When the SiO2 in the composites reached to 20wt%, the thermal decomposition temperature at 5 % weight loss of the composites made by in-situ in acid condition increased by 17.8 ℃and it increased by 11.7 ℃ and 8.9 ℃ respectively for the in-situ basic condition and solution blend method. Because the SiO2 in the composites inhibited thermal motion in the chains of PVA, the thermal decomposition temperature at 5 % weight loss enhanced. After modifying the SiO2 in the composites by GT, the thermal decomposition temperature at 5 % weight loss of the composites also increased again. In the composites made by in-situ acid condition, the thermal decomposition temperature of the one had modified SiO2 increased by 5.8 ℃ at 5 % weight loss, in the comparison with the one had unmodified SiO2. In the in-situ in basic condition, the enhancement of the thermal decomposition temperature was 14.7℃. In solution blend method, the thermal decomposition temperature at 5 wt% loss decreased by 4.0℃. In the analysis of XRD, the degree of crystallinity of PVA decreased with the increase of the content of SiO2. When the SiO2 in the composites reached 30wt%, the degree of crystallinity of the composites made by in-situ in acid condition decreased by 18.8% and decreased by 16.9% and 12.7% respectively in in the in-situ in basic condition and solution blend method. Due to the hydrogen bonds between SiO2 and PVA, it reduced the interaction among the chains of PVA; hence, PVA's degree of crystallinity decreased. After modifying the SiO2 in the composites by GT, because the OH groups on the SiO2 surface increased and interacted with the hydroxyl groups of PVA, the degree of crystallinity for PVA decreased again. In the composites made by in the in-situ in basic condition and solution blend method, the degree of crystallinity of the modified SiO2 and that without SiO2 decreased by 3.7% and 1.4% respectively. However, it increased 3.3% for the in-situ at acid condition. In the FESEM analysis of fracture surfaces, when the content of SiO2 in the composites reached 30 wt%, the particles of SiO2 still well-dispersed in the matrix of PVA and there was no aggregation. SiO2 had good dispersion in PVA, so there was no apparent effect on the dispersion of SiO2 after we modified the SiO2 in the composites by GT. The diameter of the particles of SiO2 was around 5 nm to 20 nm.
URI: http://hdl.handle.net/11455/3602
其他識別: U0005-0402200820124800
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0402200820124800
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.