Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3603
標題: 超音波輔助三液相相間轉移觸媒合成鄰-羥基苯甲酸丁酯之反應動力學研究
Kinetics for Synthesizing o-Hydroxybenzoic Acid Butyl Ester via Ultrasound Assisted Tri-Liquid Phase-Transfer Catalysis
作者: 陳建行
Chen, Chien-Hsing
關鍵字: Phase-transfer catalytic
相間轉移觸媒
Third-liquid phase
esterification
ultrasound
sonochemistry
cavitation
酯化反應
第三液相
超音波
超音波化學
空穴效應
出版社: 化學工程學系所
引用: [1]P. Cocagen, J. Elguero. R. Gallo, Heterocycles, 20(7) (1983) 1379 [2]J. Jarrouse, The Influence of quaternary chloride on the reaction of labike hydrogen compound and chlorine-substituted chlorine derivatives, CR Heabd., Seances Acad. Sci. C232 (1951) 1424-1434. [3]C.M. Starks, Phase-Transfer Catalysis heterogeneous reactions involving anion transfer by quaternary ammonium and phosphonium salts, J. Am. Chem. Soc. 93 (1971) 195-199. [4]A.W. Herriott, D. Picker, Phase transfer catalysis. An evaluation of catalysts, J. Am. Chem. Soc. 97 (1975) 2345-2349. [5]H.E. Hennis, J.P. Eastely, L.R. collins, L.R. Thompson, Ester from the reaction of alkyl chlorides and sodium salts of carboxylic acids, Ind. Eng. Chem. Prod. Res. Pev. 6 (1967) 193-195. [6]H.E. Hennis, L.R. Thompson, J.P. Long, Ester from the reaction of alkyl halides and salts of carboxylic acids. Comprehensive study of amine catalyst, Ind. Eng. Chem. Prod. Res. Pev. (1968) 96-104. [7]C. J. Pederson, cyclic polyethers and their complexes with metal salts, J. Am. Chem. Soc. 89 (1967) 7070-7036. [8]D.J. Sam, H.E. Simmons, Crown polyether chemistry. Potassium permanganate oxidations in benzene, J. Am. Chem. Soc. 94 (1972) 4024-4025. [9]H.K. Frensdorff, J. Am. Chem. 93(3) (1971) 600. [10]S. Yanagida, Y. Noji, M. Okahara, Phase transfer catalysis of poly (oxyethylene) dimethyl ethers(Glymes), Tetrahedron Letts. (1977) 2893. [11]D. Balasubramanian, P. Sukumar, B. Chandani, linear unsubstituted polyethylene glycols as phase tramsfer catalysis, Tetrahedron Letts. (1977) 2893. [12]E. Angeletti, P. Tundo, P. Venturello, Gas-liquid phase-transfer synthesis of phenyl ethers and sulphides with carbonate as base and carbowax as Catalyst, J. Am. Chem. Soc. Perkin Trans. I. (1982) 1137. [13]H.M. Yang, C.L. Lin, Phase transfer catalyzed benzylation of sodium benzoate using aliquat 336 as catalyst in liquid-liquid system, J Mol. Catal. A-Chem. 206(2003)67-76. [14]M.L. Wang and Z.F. Lee “Reaction of 4,4-Bis(chloromethyl)-1,1’-biphenyl with 1-Butanol”, J. Mol. Catal. A-Chem. 229(2005) 259-269. [15]A. Loupy, J. Sansoulet, F. Vaziri-Zand, Improved and simplified synthesis of aryl ethers by alkylation of phenolate ions. Solid-liquid phase-transfer catalysis in the absence of organic solvents. Bulletin de La Societe Chimique de France, 6 (1987) 1027-1035. [16]H.M. Yang, H.C. Liu, Kinetics for synthesizing benzyl salicylate via solid-liquid phase catalysis, Appl. Catal. A-Gen. 258 (2004) 25-31. [17]E. Angeletti, P. Tundo, P. Venturello, The wittig synthesis of alkenes under gas-liquid phase-transfer catalysis, Journal of the Chemical Society, Chemical Communications, 6 (1983) 269-271. [18]H.S. Wu, C.L. Lee, Mechanism and NaOH effect of polymer-supported catalyst: phosphazene reaction, Chem. Eng. J. 90 (2002) 241-251. [19] S. Baj, A. Siewniak, B. Socha, Synthesis of dialkya peroxides in the presence of polymer-supported phase-transfer catalysts, Appl. Catal. A-Gen. 309 (2006) 85-90. [20]T. Ido, T. Yamamoto, G. Jin, S. Goto, Third-phase Catalytic activity of halogen exchange reaction in phase transfer catalytic system, Chem. Eng. Sci. 52 (1997) 3511. [21]H.M. Yang, C.C. Li, Kinetics for synthesizing benzyl salicylate by third-liquid phase-transfer catalysis, J. Mol. Catal. A-Chem. 246 (2006) 255-262. [22]C.M. Starks, C.L. Liotta, M. Halpern, Phase transfer catalysis fundamentals, Application and Idustrial Perspectives, Champman & Hall:New York, (1994) 1-17 [23]M. Makosza, Two-phase reaction in the chemistry of carbanions and halocarbenes-useful tool in organic sythesis, Pure Appl. Chem. 43(3-4) (1975) 439-462. [24]M. Makosza, E. Bialecka. Reactions of organic anions. LXXIII. Alkylation of phenylacetonitrile at the interface with aqueous sodium hydroxide, Tetrahedron Lett. 2 (1997) 183-186. [25]R. Neumann, Y. Sasson, Mechanism of base catalyzed reactions in phase-transfer systems with Poly(ethylene glycols) as catalysts. The isomerization of allylanisole, J. Org. Chem. 49 (1984) 3448-3451. [26]D.H. Wang, H.S. Weng, Preliminary study on the Role Played by the third lliquid phase in phase transfer catalysis, Ind. Eng. Chem. Res. 43 (1988) 2019-2024. [27]D. Masson, S. Magdasi, Y. Sasson, Role of a third liquid phase in phase transfer catalysis, J. Org. Chem. 56 (1991) 7229-7232. [28]D.H. Wang, H.S. Weng, Phase transfer catalytic reaction between n-butyl bromide and sodium phenolate-formation of the third liquid phase and its effect. J. Chin. Inst. Chem. Eng. 26(3) (1995) 147-156. [29]T. Ido, T. Yamamoto, G. Jin, S. Goto, Third-liquid Catalytic Activity of Halogen Exchange Reaction in phase Transfer Catalytic System. Chem. Eng. Sci. 52 (1997) 3511-3520. [30]G.D. Yadav, C.A. Reddy, Kinetics of the n-Butoxylation of p-chloronitrobenzene under liquid-liquid-liquid phase transfer catalysis. Ind. Eng. Chem. Res. 38 (1999) 2245-2253. [31]H.S. Weng, S.M. Kao, H.C. Hsiao, Synthesis of n-Butyl phenyl rther by tri-liquid-phase catalysis using poly(ethylene glycols)-600 as a catalyst. 1. Analysis of factor affecting the formation of a third liquid phase, Ind. Eng. Chem. Res. 39 (2000) 2772-2778. [32]S. Goto, T. Ido, G. Jin, Rate enhaancement effect of third liquid phase on dibenzyl ether production in solid-liquid-liquid phase transfer Cctalytic system. Catal. Today, 79-80 (2003) 471-478. [33]H.M. Yang, P.J. Lin, Kinetic for etherification of sodium o-nitrophenoxide via third-liquid phase-transfer catalysis, J. Mol. Catal. A-Chem. 235 (2005) 293-301. [34]H.M. Yang, A theoretical model for phase transfer catalyzed reaction with The third-liquid phase. J. Chin. Inst. Eng. 21(4) (1998) 399-408. [35]G.D. Yadav, C.A. Reddy, Ind. Eng. Chem. Res. 38 (1999) 2245-2253. [36]G.D. Yadav, C.A. Reddy, Kinetics of the n-Butoxylation of p-chloronitrobenzene under lquid-liquid-liquid phase transfer catalysis. Ind. Eng. Chem. Res. 38 (1999) 2245-2253. [37]T. Ido, T. Yamamoto, S. Jin, Goto, Chem. Eng. Sci. 52 (1997) 3511-3520. [38]G. Maerker, J. F. Carmichael, W. S. Port, Glycidl Ester Method of preparation and study of Ssome reaction variale, J. Org. Chem. 26 (1961) 2681. [39]H.E. Hennis, J.P. Eastely, L.R. Collins, L.R Thompson, Ester from the Reaction of Alkyl Halidea and Salt of Carboxylic Acid. Reaction of primary Alkyl Chlorides and sodium salts of Carboxylic Acid, Ind. Eng. Chem. Prod. Res. Pev. 6 (1967) 193-195. [40]吳懷恩, 以固-液相相間轉移觸媒進行苯二甲酸及取代苯乙酸之酯化反應動力學研究, 中興大學化工研究所碩士論文, 台中市(1999) [41]Tamaddon, Fathemeh, Amrollahi, Mohammad Ali, Sharafat, Leily, Green protocol for chemoselective O-acylation in the presence of zinc oxide as a heterogeneous, reusable and eco-friendly catalyst. Tetrahedron Lett. 46(45) (2005) 7841-7844. [42]J.L. Louis, Synthetic organic sonochemistry, Plenum Press, New York and London. [43] http://www.scs.uiuc.edu/~suslick/britannica.html [44] http://www.scs.uiuc.edu/~suslick/britannica.html [45]T.J. Mason, Advances in Sonochemistry, (a)Vol. 1, 1990; (b)Vol. 2, 1991;(3)Vol., 1993, JAI Press. London. [46]K.S. Suslic. Ultrasound, its physical, Biological and Chemical Effects, VCH. Weinheim. (1988) [47]C. Einhorn, J. Einhorn, J.L. Luche, Synthesis, (1989) 787-813. [48]G.J. Price. (ed.) Current Trend in Sonochemistry, Royal Soiety of Chemistry, Cambridge. (1993) [49]R.A. Roy, Ultrasonics Sonochem, (1994) [50]T. Lepoint, F. Mullie, Ultrasonics Sonochem, (1994) [51]M.H. Entezari, A.A. Shameli, Phase-transfer catalysis and ultrasonic waves I. Cannizzaro reaction. Ultrason. Sonochem. 7 (2006) 169-172 [52]M.L. Wang, Venugopal Rajendran, Ultrasound assisted phase-transfer catalytic epoxidation of 1,7-octadiene-A kinetic study. Ultrason. Sonochem. 14 (2007) 46-54
摘要: 本研究探討以超音波輔助三液相相間轉移觸媒催化鄰-羥¬基苯甲酸鈉與溴丁烷合成鄰-羥苯甲酸正丁酯之酯化反應,三液相催化系統於特定條件下能析出一相促進反應的進行。超音波化學是利用超音波促進化學反應的技術,可提供反應所需的熱量以利反應的進行。本研究內容包括合成鄰-羥苯甲酸正丁酯之動力學研究,本系統反應條件之最適化,以及超音波振盪、攪拌混合與結合兩種效應之比較。 觸媒溴化四丁基銨、溴化四丁基鏻能順利形成第三液相。有機相反應物溴丁烷用量增加時,反應性提升;使用過量時產率變化量與有機相反應物用量無關。本系統中頻率越低,可獲得較高的產率,超音波頻率28 kHz操作下,反應3小時可獲得82.3 %的產率,並由實驗數據可得第三液相中觸媒中間體的增益比率(η)與有機相中產物的關係式: ,由實驗數據可得虛擬一階動力式 ,反應溫度50~80 ℃範圍內,所求得的活化能為31.5 kJ/mol。 由實驗針對各變數影響作篩選,以提高產率、成本效益、利於分析為前提,於超音波條件: 300 W;28 kHz、反應溫度70 ℃下可得97.33 %。超音波振盪操作時,頻率越高提供反應的能量減少,導致反應速率也變慢。攪拌操作時,攪拌混合可提高分子間的碰撞機率,克服相與相之間的質傳阻力,使得反應速率由本質反應決定。當結合超音波振盪與攪拌兩種操作時,反應性可大幅提升。攪拌系統中,攪拌轉速超過100 rpm時可克服質傳阻力,當加入超音波輔助時,可更進一步提高產率,增加反應速率,視反應速率常數可提升約53.3 %。
The kinetics of esterification of sodiume salicylate with butyl bromide to produce salicylic acid n-butyl ester were investigated via ultrasound-assisted tri-liquid phase-transfer catalysis. Third-liquid phase was formed with high catalytic intermediates to increase reaction rate. Sonochemistry is a technique to increase chemical reaction rate by ultrasounic irradiation. Ultrasonic irradiation can provide energy to promote the reaction. The subject of this research involves kinetics for synthesizing o-hydroxybenzoic acid butyl ester, the optimum condition of the reaction system, comparisons between ultrasound-assisted, stirring mixing and both operations. Only tetrabutylphosphonium bromide(TBPB) and tetrabutylammonium bromide(TBAB) can form third-liquid phase among the four catalysts tested in this study. Reaction activity increases with increasing organic reactant concentration as butyl bromide added but keeps constant with largely excess amounts. Activity increases with decreasing ultrasonic frequency. Using ultrasonic frequency 28 kHz the production yield was 82.3 % within 3 hours. Correlating the experimental data, the relation of the enhancement ratio (η) of ArCOOQ in third-liquid phase, and the product yield in organic phase is . The pseudo-first-order kinetic model was used to well describe the overall reaction, by the equation , and the apparent reaction rate constants (kapp) were obtained for with different conditions. We can obtain the activation energy of 31.5 kJ/mol by Arrehenius equation during 50~80 ℃. For high product yield, cost, easy analysis, the production yield was 97.3% as ultrasonic frequency 28kHz, power 300W, and 70℃. With ultrasound alone, the activity becomes lower the energy of higher frequency decreases quickly. Molecule collision raised by agitation can overcome mass transfer resistance. Combining two operations of ultrasound and agitaion make the activity better than with each single operation. Mass transfer resistance can be neglected by stirring speed more than 100 rpm, the yield increases and kapp increases 53.3 % as ultrasound assisted extra.
URI: http://hdl.handle.net/11455/3603
其他識別: U0005-0407200712210600
文章連結: http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0407200712210600
Appears in Collections:化學工程學系所

文件中的檔案:

取得全文請前往華藝線上圖書館



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.